

Studija procjene opasnosti i rizika od poplava uslijed jakih oborina i djelovanja mora na pilot područjima u Hrvatskoj (projekt STREAM)

KNJIGA 1: ANALIZA OBORINA NA PILOT PODRUČJIMA

Rijeka – Zagreb, listopad, 2022.

European Regional Development Fund

http://www.italy-croatia.eu/web/stream

Naručitelj:	SVEUČILIŠTE U ZADRU Ulica Mihovila Pavlinovića 1 23 000 Zadar
Predmet:	USLUGA IZRADE HIDROLOŠKO-HIDRAULIČKE ANALIZE I PRIPADAJUĆIH KARATA TE IZRADE PLANA UPRAVLJANJA POPLAVNIM RIZICIMA
Naziv:	STUDIJA PROCJENE OPASNOSTI I RIZIKA OD POPLAVA USLIJED JAKIH OBORINA I DJELOVANJA MORA KNJIGA 1: ANALIZA OBORINA NA PILOT PODRUČJIMA
Razina dokumentacije:	Studija
Voditelj projekta:	Dr. sc. Nino Krvavica
Broj ugovora:	Sveučilište u Zadru (KLASA: 406-01/21-01/145) Građevinski fakultet u Rijeci (KLASA: 361-08/21-01/11) Vodoprivredno-projektni biro d.d. (KLASA: VPB – KUG – 21-0034) Državni hidrometeorološki zavod (KLASA: 920-08/21-13/14)
Izvršitelj: (Zajednica gospodarskih subjekata) Podizvoditeli:	SVEUČILIŠTE U RIJECI, GRAĐEVINSKI FAKULTET VODOPRIVREDNO-PROJEKTNI BIRO d.d. DRŽAVNI HIDROMETEOROLOŠKI ZAVOD CENTAR GRAĐEVINSKOG FAKULTETA d.o.o.
Mjesto i datum:	Rijeka – Zagreb, listopad, 2022.

Stručni tim Izvršitelja: (nositelji pojedinih područja)

Voditelj projekta i hidrauličkih istraživanja:	dr. sc. Nino Krvavica, dipl. ing. građ.				
Voditelj hidroloških istraživanja:	dr. sc. Josip Rubinić, dipl. ing. građ.				
Voditelj istraživanja dinamike mora:	dr. sc. Goran Lončar, dipl. ing. građ.				
Voditelj izrade plana upravljanja rizicima od poplava:	Ana Jelka Graf, dipl. ing. građ.				
Savjetnik za hidrološko-hidrauličko modeliranje poplava:	Dario Kolarić, dipl. ing. građ.				
Stručnjak za kvalitetu vode:	dr. sc. Neven Cukrov				
Stručnjak za klimatologiju:	dr. sc. Ksenija Cindrić Kalin, dipl. ing. fiz.				
Stručnjak za održive sustave odvodnje oborinskih voda:	Tatjana Uzelac, dipl. ing. građ.				

SADRŽAJ PO KNJIGAMA

RADNI ZADATAK 1: Procjena opasnosti i rizika od poplava uslijed jakih oborina i djelovanja mora na pilot područjima u Hrvatskoj

- KNJIGA 1: Analiza oborina na pilot područjima
- KNJIGA 2: Procjena opasnosti i rizika od poplava uslijed jakih oborina na pilot područjima
- KNJIGA 3: Sveobuhvatna analiza urbanih poplava u Zadru te unaprjeđenje sustava prognoze poplava

RADNI ZADATAK 2: Izrada plana upravljanja rizicima od poplava uslijed obilnih oborina i djelovanja mora

• KNJIGA 4: Plan upravljanja rizicima od poplava

KLASA: 361-08/21-01/11 URBROJ: 2170-57-05-00-22-9

Naručitelj:	SVEUČILIŠTE U ZADRU				
	Ulica Mihovila Pavlinovića 1, 23 000 Zadar				
Izvršitelj:	SVEUČILIŠTE U RIJECI, GRAĐEVINSKI FAKULTET				
(Zajednica gospodarskih	VODOPRIVREDNO-PROJEKTNI BIRO d.d.				
subjekata)	DRŽAVNI HIDROMETEOROLOŠKI ZAVOD				
Podizvoditelj:	CENTAR GRAĐEVINSKOG FAKULTETA d.o.o.				

STUDIJA PROCJENE OPASNOSTI I RIZIKA OD POPLAVA USLIJED JAKIH OBORINA I DJELOVANJA MORA

KNJIGA 1: ANALIZA OBORINA NA PILOT PODRUČJIMA

Broj studije:

033/2021

Voditelj studije:

dr. sc. Nino Krvavica

Voditelj studije:

dr. sc. Nino Krvavica

IŠTE Dekan: GRAĐEVINSKI FAKULTET dr. sc. Mladen Bulić

Naziv:	STUDIJA PROCJENE OPASNOSTI I RIZIKA OD POPLAVA USLIJED JAKIH OBORINA I DJELOVANJA MORA					
	KNJIGA 1: ANALIZA OBORINA NA PILOT PODRUČJIMA					
Naručitelj:	SVEUČILIŠTE U ZADRU					
	Ulica Mihovila Pavlinovića 1, 23 000 Zadar					
Izvješće izradili	SVEUČILIŠTE U RIJECI, GRAĐEVINSKI FAKULTET					
(Zajednica ponuditelja):	DRŽAVNI HIDROMETEOROLOŠKI ZAVOD					
Voditelj studije:	dr. sc. Nino Krvavica					
Suradnici:						
Sveučilište u Rijeci,	dr. sc. Josip Rubinić					
Građevinski fakultet	Maja Radišić, mag. ing. aedif.					
(vodeći član)						
Državni hidrometeorološki	dr. sc. Ksenija Cindrić Kalin					
zavod	dr. sc. Ivan Güttler					
	mr. sc. Melita Perčec Tadić					
	Leonardo Patalen, dipl. ing. geod.					

Sadržaj

1	U١	/od		.1						
	1.1	Uvc	odno o STREAM projektu	1						
	1.2	Pro	jektni zadatak	2						
	1.2.1 Radni zadatak 1									
	1.3	Uvc	odno o problematici jakih kratkotrajnih oborina	.5						
2	Kli	imato	ološke značajke pilot područja	7						
	2.1	Uvc	odno o klimatološkim značajkama	.7						
	2.2	Klin	natološke značajke pilot područja Poreč	.8						
	2.3	Klin	natološke značajke pilot područja Gospić	14						
	2.4	Klin	natološke značajke pilot područja Zadar	20						
	2.5	Klin	natološke značajke pilot područja Biograd na Moru	26						
	2.6	Klimatološke značajke pilot područja Split								
	2.7	Klin	natološke značajke pilot područja Metković	38						
	2.8	Usp	ooredba mjesečnih količina oborina na pilot područjima	44						
3	Μ	etodo	ologija provedenih obrada oborina	45						
	3.1	Ana	aliza prihvatljivosti ombrografskih podataka	45						
	3.2	Ana	aliza nizova godišnjih maksimalnih kratkotrajnih i višednevnih količina oborine	47						
	3.3	Ana	aliza vjerojatnosti pojave maksimalnih količina oborina	47						
	3.4	Ger	neriranje HTP i ITP krivulja na pilot područjima	48						
	3.5	Ger	neriranje projektnog pljuska na pilot područjima	50						
	3.5	5.1	Identifikacija relevantnih pljuskova	50						
	3.5	5.2	Definiranje bezdimenzionalnog oblika projektnog pljuska	53						
	3.5	5.3	Generiranje projektnog pljuska	55						
4	Re	zulta	ti analize kratkotrajnih jakih količina oborina na pilot područjima	56						

4.1	Prihvatljivost ombrografskih podataka56
4.2	Analiza nizova godišnjih maksimalnih količina oborine65
4.3	Vjerojatnosti pojave maksimalnih količina oborina74
4.4	HTP i ITP krivulje77
4.4.	1 HTP krivulje kratkotrajnih oborina77
4.4.	2 HTP krivulje višednevnih oborina85
4.4.	3 ITP krivulje kratkotrajnih oborina89
4.5	Oblici projektnog pljuska93
4.6	Prostorna varijabilnost ekstrema količine oborina između pilot područja106
5 Tre oborina	nutna saznanja o utjecaju klimatskih promjena na značajke pojave kratkotrajnih jakih 110
6 Zak	ljučak i preporuke115
Popis lite	erature117
Prilog A:	Tablice projektnih pljuskova119
Prilog B:	Tablice vjerojatnosti pojave maksimalnih količina oborine

1 Uvod

1.1 Uvodno o STREAM projektu

STREAM projekt je pokrenut u sklopu programa prekogranične suradnje INTERREG V-A Italija – Hrvatska 2014. – 2020. s ciljem unaprjeđenja sustava praćenja rizika i upravljanja rizikom od poplava uslijed jakih oborina i djelovanja mora na šest odabranih pilot područja u Republici Hrvatskoj. Ona uključuju šira područja gradova Poreča, Gospića, Zadra, Biograda n/M, Splita i Metkovića, kako je prikazano na slici 1.1.1.

Cilj projekta STREAM je doprinijeti povećanju sigurnosti projektnih pilot područja te smanjenju štetnih posljedica koje poplave uslijed jakih oborina i djelovanja mora imaju na ljudsko zdravlje, okoliš, kulturnu baštinu i gospodarstvo. Specifični ciljevi projekta su postići bolje razumijevanje rizika od poplava uslijed jakih oborina i djelovanja mora, poboljšati sustav informiranja i uzbunjivanja s ciljem smanjenja rizika te unaprijediti upravljanje rizicima kroz integraciju rezultata u planske dokumente.

Slika 1.1.1. Pilot područja projektnog zadatka (iz Dokumentacije za nadmetanje, Knjiga 3. Projektni zadatak)

Projekt STREAM sastoji se od pet međusobno povezanih i usklađenih radnih paketa, unutar kojih se provodi niz aktivnosti iz tematski različitih područja, a to su ukratko:

- **Katastar poplava** koji omogućuje bolje razumijevanje urbanog i prirodnog planiranja te upravljanja u svrhu prevencije ili umanjenja štete od moguće poplave.
- Kartiranje opasnosti i rizika od poplava što omogućava prostorni prikaz područja koja bi mogla biti poplavljena prema tri vjerojatnosti, indikativan broj potencijalno pogođenih stanovnika, vrste potencijalno pogođene gospodarske aktivnosti područja, infrastrukturu koja bi mogla uzrokovati slučajno onečišćenje u slučaju poplave te prosječnu štetu po jedinici površine.
- Sustav prognoziranja poplava koji će se zasnivati na iskustvu višemodelskog sustava razvijenog u EU-Adrion I-STORMS projektu, pomorskoj službi Copernicus i postojećim regionalnim proizvodima.
- Plan upravljanja rizicima od poplava (FRMP) koji treba obuhvaćati ključne elemente za upravljanje poplavama: integrirati upravljanje vodama i korištenjem zemljišta, upravljati rizikom i nesigurnošću, usvojiti najbolje kombinacije strategija, osigurati participativni pristup te usvojiti integrirani pristup upravljanju opasnostima.
- **Međunarodni upravni odbor** koji se sastoji od multidisciplinarnih stručnjaka te predstavnika nacionalnih i regionalnih institucija koji će podržati provedbu projekta sudjelovanjem u obuci, aktivnostima komunikacije i diseminacije te podržavanjem implementacije FRMP-a.

Previđeno trajanje predmetnog projekta je od 01. travnja 2020. do 31. prosinca 2022. godine

1.2 Projektni zadatak

S područja hrvatske jedan od projektnih partnera je Sveučilište u Zadru (Naručitelj), za čije potrebe zajednica gospodarskih subjekata (Izvršitelj): Građevinski fakultet u Rijeci (GRADRI), Vodoprivrednoprojektni biro d.d. (VPB) i Državni hidrometeorološki zavod (DHMZ) te podizvoditelj Centar Građevinskog fakulteta d.o.o. provode predmetni zadatak s ciljem realizacije predviđenih aktivnosti kroz radne pakete.

Projektni zadatak podijeljen je na dva radna zadataka:

- Radni zadatak 1 Procjena opasnosti i rizika od poplava uslijed jakih oborina i djelovanja mora na pilot područjima u Hrvatskoj i
- Radni zadatak 2 Izrada Plana upravljanja rizicima od poplava uslijed obilnih oborina i djelovanja mora.

U nastavku se daje detaljan opis ova dijela radnog zadatka 1 vezanog uz analizu oborina, kako je to specificirano u Projektnom zadatku Knjige 3. Dokumentacije za nadmetanje.

1.2.1 Radni zadatak 1

Osnovni cilj radnog zadatka 1 je izrada Studije procjene opasnosti i rizika od poplava uslijed jakih oborina i djelovanja mora. U okviru ove Studije, a i cijelog projekta STREAM, potrebno je provesti aktivnosti koje će rezultirati izrađenim katastrom poplava, odnosno kartama opasnosti i rizika od poplava uslijed jakih oborina na šest pilot područja u Hrvatskoj te uspostavi i unaprjeđenju sustava za prognoziranje poplava od jakih oborina i djelovanja mora u Zadru, a sve uz pomoć hidrološkohidrauličkih modeliranja. Također, iako postoje karte opasnosti i rizika od poplava s mora, iste su izrađene samo na osnovu projekcija visokih morskih razina i topografskih podloga te ne uključuju dinamiku mora, odnosno utjecaj valova, olujnih uspora i meteotsunamija, koji mogu znatno utjecati na obuhvat poplavljenog obalnog područja.

Odabrana pilot područja na kojima je potrebno procijeniti opasnosti i rizike od pluvijalnih poplava, izraditi odgovarajuće karte te ih uključiti u katastar poplava su šira područja sljedećih gradova:

- Poreč
- Gospić
- Zadar
- Biograd na Moru
- Split
- Metković

Obuhvat svih šest pilot područja prikazan je na slici 1.1.1.

Odabrano pilot područje za procjenu opasnosti i rizika od poplava s mora kao integralnog dijela višemodelskog sustava za prognoziranje obalnih poplava je grad Zadar.

Tijekom izrade Studije, Naručitelj će u dogovoru s Izvršiteljem odabrati dodatno pilot područje na užem području u gradu Zadru za detaljnije analize poplava. Navedene analize poplava će uključivati i sveobuhvatna modelska istraživanja urbanih poplava s ciljem izrade probabilističkog modela za bolje razumijevanje pluvijalnih poplava.

Konačno, rezultati navedene Studije trebali bi pružiti podršku Naručitelju u ostvarivanju ciljeva i rezultata projekta STREAM, stoga je potrebna stalna suradnja između Naručitelja, Izvršitelja i ostalih partnera na projektu tijekom trajanja projekta. Također, ova Studija trebala bi doprinijeti ispunjavanju obveza koje je Naručitelj preuzeo u sklopu projekta STREAM, a što pored prethodno navedenih stavki uključuje i objavu pet znanstvenih radova.

U sklopu studije potrebno je provesti procjenu opasnosti i rizika od poplava uslijed jakih oborina (pluvijalne poplave) na šest pilot područja (Zadar, Split, Metković, Poreč, Gospić i Biograd na Moru) te izraditi karte opasnosti i rizika od poplava. Navedene karte potrebno je implementirati u katastar

poplava zajedno sa svim korištenim podlogama. U početku aktivnosti Izvršitelj će napraviti izvještaj o prikupljenim i sistematiziranim podacima.

Na jednom pilot području (Zadar) Izvršitelj će provesti sveobuhvatna istraživanja urbanih poplava na mikro razini s ciljem razvoja sustava prognoze poplava od jakih oborina i poplava s mora (Flood Forecasting System).

Studija se sastoji od tri tematske cjeline:

- 1. Analiza oborina na pilot područjima
- 2. Procjena opasnosti i rizika od poplava uslijed jakih oborina na pilot područjima
- 3. Sveobuhvatna analiza urbanih poplava u Zadru te unaprjeđenje sustava prognoze urbanih poplava

<u>A. Analiza oborina na pilot područjima</u>. Izvršitelj će provesti osnovne obrade oborinskog režima kratkotrajnih jakih oborina, za razdoblje od minimalno 30 godina s jedne ombrografske postaje najbliže svakom pilot području (Zadar, Split, Metković, Poreč, Gospić i Biograd na Moru), koje će uključiti sljedeće:

- Analizu prihvatljivosti ombrografskih podataka za provedbu daljnjih analiza usporedba količina oborine izmjerenih prema kišomjeru i ombrografu
- Analizu trendova i vjerojatnosti pojava kratkotrajnih jakih oborina za trajanja od 10 min do 24 h, kao i maksimalnih kumulativnih krivulja duljih trajanja
- Definiranje HTP i ITP krivulja za trajanja do 24 h
- Analizu prostorne raspodjele oborina na svakom pilot području
- Analizu oblika projektnog pljuska za različite razrede trajanja unutar raspona do 24 h
- Sistematizaciju saznanja o utjecajima klimatskih promjena na značajke pojava kratkotrajnih jakih oborina i kvantificiranu ocjenu mogućih utjecaja takvih promjena na promjene vršnih otjecanja oborinskih voda

U navedenim analizama Izvršitelj treba nužno koristiti različite tipove statističkih obrada:

- Analiza homogenosti i analize trenda
- Analize vjerojatnosti pojave jakih oborina s testiranjem dobrote prilagodbe
- Definiranje HTP/ITP krivulja višeparametarskim funkcijama izjednačenja
- Definiranje projektnog pljuska prema jednoj od metoda kumulativnih profila, odnosno masenih krivulja (npr. Metoda prosječne varijabilnosti, Huffove krivulje, i sl.)

1.3 Uvodno o problematici jakih kratkotrajnih oborina

Na pojavnost jakih kratkotrajnih oborina utječe niz prostornih i klimatskih faktora, a na otjecanje oborinskih voda utječu i dodatni faktori, kako prirodni (geološka i pedološka podloga, prirodan vegetacijski pokrov, topografija), tako i antropogeni (prenamjena zemljišnog pokrova, stupanj urbane izgrađenosti i opremljenosti infrastrukturom, sustav oborinske odvodnje, prometna infrastruktura).

Oborinskim vodama posebno su ugrožene urbane sredine u kojima poplave nastaju kao kombinacija nagle i neplanske urbanizacije, neodržavanja sustava odvodnje te sve češćih kratkotrajnih jakih oborina (IPCC, 2022). Rezultati nedavno provedenih analiza trenda pojava kratkotrajnih jakih oborina za Split i Varaždin, kao pokazatelja maritimnog i kontinentalnog režima oborina, ukazuju na statistički neznačajnu prisutnost pojačanja kratkotrajnih jakih oborina na analiziranim lokalitetima (Cindrić i sur., 2014). Stoga je zaključeno da se uzroci sve učestalijih problema koji se javljaju s oborinskom odvodnjom u Republici Hrvatskoj (RH) moraju tražiti i izvan domene mogućih vremenskih promjena značajki kratkotrajnih jakih oborina (Krvavica i sur., 2018).

Posljednjih nekoliko desetljeća sve se češće pojavljuju ekstreme količine oborina i poplave na području RH, s najizraženijim ekstremima na Jadranskoj obali (Gajić Čapka i sur., 2014; Ivančan-Picek i sur., 2014). Priobalno područje RH nalazi se pod utjecajem sredozemnih atmosferskih strujanja i u kombinaciji sa planinskim masivom Dinarida u njegovom zaleđu ima i naglašenije pojave kratkotrajnih intenzivnih oborina. Na tom priobalnom području u vrlo značajnoj mjeri prisutne su i krške površine na kojima velike oborine utječu na bitno složeniji karakter otjecanja njima izazvanih površinskih i podzemnih voda. Priobalni dijelovi (kao što su pilot područja Poreč, Zadar, Biograd na Moru i Split) su i pod složenim utjecajem dinamike kolebanja razine mora – kako unutardnevnih, tako i na duljoj, višegodišnjoj vremenskoj skali. S druge strane, područja koja su smještena uz veće rijeke u zaleđu (kao što su pilot područja Gospić i Metković), ujedno su izložena i poplavama koje nastaju uslijed izlijevanja vode iz korita rijeka (tzv. fluvijalne poplave).

Za ublažavanje štetnih posljedica pojava obilnih oborina nužno je preispitati značajke oborinskog režima kratkotrajnih jakih oborina, tehnička rješenja odvodnje oborinskih voda (jer je zamjetno da se štetne posljedice vrlo učestalo javljaju i na urbanim područjima koja nominalno imaju uređenu urbanu odvodnju), kao i uspostaviti sustave za rano upozoravanje na mogućnost poplava uslijed pojava obilnih oborina (tzv. pluvijalne poplave). U Europi već postoje sustavi za rano upozoravanje od pojava poplavnih voda vodotoka koji imaju karakter bujičnih voda, pa i vrlo prikladan vodič

(UCAR, 2010) koji bi mogao biti predložak za sličan sustav upozoravanja na poplave od obilnih oborina na pilot područjima projekta STREAM.

Potreba osiguranja primjerene zaštite od pojava obilnih oborina i njihovih štetnih posljedica uvjetovana je i intenziviranjem klimatskih promjena. Klimatske promjene, kako već zapažene tako i u još većoj mjeri predviđene do kraja 21. stoljeća (IPCC, 2022), manifestiraju se na vrlo različite načine, a vrlo se često javljaju i kao združena manifestacija nekoliko različitih promjena. Na primjer pri pojavama velikih voda i njima uzrokovanih poplava kao kombinacija porasta razine mora i velikih voda uzrokovanih intenzivnijim pojavama kratkotrajnih jakih oborina. Zbog toga je u danom dokumentu dan i pregled postojećih saznanja o mogućim promjenama kratkotrajnih jakih oborina, temeljeno na rezultatima prethodnih klimatskih istraživanja. Treba također napomenuti da prema Strategiji prilagodbe klimatskim promjena u Republici Hrvatskoj za razdoblje do 2040. godine s pogledom na 2070. godinu (NN 46/2020), među izdvojenim mjerama prilagodbe su i mjere HM-1 (Jačanje kapaciteta za provedbu nestrukturnih mjera zaštite od štetnog djelovanja voda pri pojavama ekstremnih hidroloških prilika čije je povećanje intenziteta i učestalosti pojave uvjetovano klimatskim promjenama) te HM-04 (Jačanje upravljačkih kapaciteta nadležnih institucija za djelovanje pri pojavama ekstremnih hidroloških prilika, koje se neposredno odnose na problematiku zaštite i prilagodbe pojavama obilnih oborina.

Treba još napomenuti kako je problematika pojavnosti jakih oborina na području RH nedavno analizirana i u okviru projekta RAINMAN (Građevinski fakultet u Rijeci i DHMZ, 2019). U okviru te studije, definirane su ili novelirane HTP i ITP krivulje za nekoliko postaja na pilot područjima Istre i Zagreba, generirani su oblici projektnog pljuska te je analiziran utjecaj klimatskih pojava na kratkotrajne jake oborine. Studija RAINMAN stoga predstavlja korisno metodološko uporište i polazište za daljnja razmatranja problematike jakih oborina i u okviru predmetne analize.

2 Klimatološke značajke pilot područja

2.1 Uvodno o klimatološkim značajkama

Za potrebe analize sadašnje klime šest pilot područja analizirani su vremenski nizovi srednje dnevne temperature zraka na 2 m i ukupne količine oborine na lokacijama meteoroloških postaja u mreži Državnog hidrometeorološkog zavoda (DHMZ) u svrhu izrade prostornih polja srednje mjesečne temperature i količine oborine metodom geostatističke interpolacije. Pritom, prostorna interpolacija je provedena unutar obuhvata slivova na svakom pilot području, koji su generirani u okviru hidroloških analiza sliva te prikazani u Knjizi 2 ove Studije.

lako su podaci s meteoroloških postaja reprezentativni za lokaciju i okolno područje, često nisu dovoljni da bi pružili sveobuhvatan uvid u klimatske prilike pilot područja. Razlozi mogu biti različiti, primjerice najbliža postaja nije unutar pilot područja kao što je slučaj za pilot područje Metković i postaju Ploče, ili je područje izrazito geografski kompleksno pa lokacija postaje nije reprezentativna za čitavo područje. Posljednje može biti slučaj kod većih područja gdje postoje i veće razlike u nadmorskoj visini kao jednom od glavnih klimatskih faktora, pri čemu lokacija meteorološke postaje nije reprezentativna za opis klime na čitavom rasponu nadmorskih visina. Primjerice postaja Gospić na istočnom je dijelu područja na n.v. od 654 m dok se područje uzdiže prema padinama Velebita i u najvišim jugozapadnim dijelovima visine prelaze 1300 m. Izrazitiji raspon nadmorskih visina je i kod pilot područja Poreč. Prostorna raspodjela temperature zraka i količine oborine, koja dominantno ovisi o geografskim obilježjima, pri ovakvim visinskim obilježjima pilot područja ne može biti adekvatno opisana podacima izmjerenim na najbližoj postaji. U pravilu je na manjim visinama toplije, a na višim hladnije, uz vrijednost vertikalne stope ohlađivanja od približno 0.6°C/100m. Kod prostorne raspodjele oborine manje kiše obično imaju nizinska područja, a više brdska i planinska. Ostala obalna područja su malih raspona nadmorskih visina pa i same meteorološke postaje zadovoljavajuće opisuju njihovu klimu.

Alternativa ili dodana vrijednost opisu klime reprezentativne meteorološke postaje je korištenje interpoliranih podataka, odnosno rastera, koji temeljem većeg skupa podataka mjerenja i dodatnih prediktora daju procjenu vrijednosti klimatskih varijabli na čitavom području uključivo i lokacije na kojima ne postoje mjerenja. Ovdje korišteni rasteri dio su novog skupa prostornih podataka Državnog hidrometeorološkog zavoda koji sadrži prostorno interpolirane srednje mjesečne temperature zraka i mjesečne sume oborine za svaki mjesec pojedine godine iz razdoblja 1981.

–2018. kao i mjesečne srednjake klimatske normale 1981. – 2010. Za izradu mjesečnih karata korištena je metoda regresijskog kriginga kojoj je prethodila analiza kvalitete podataka izmjerenih na postajama. Analiza je obuhvaćala analizu homogenosti i nadopunu nedostajućih mjesečnih podataka. Prostorna obilježja diskutirana su usporedbom s mjerenjima. Kod procjene vrijednosti klimatskih parametara na lokacijama na kojima nema mjerenja regresijski kriging kombinira višestruku regresiju ovisnu o klimatskim faktorima (nadmorska visina, udaljenost od mora, geografska širina) i interpolaciju reziduala krigingom gdje su reziduali razlike izmjerenih vrijednosti i procjena regresijom. Korištene su statističke mjere koeficijenta determinacije (R²) za procjenu uspješnosti regresijskog modela i korijen srednje kvadratne pogreške (RMSE) za ocjenu modela regresijskog kriginga (Perčec Tadić, 2010). Osim statistički mjera važna je i vizualna usporedba mjerenja i interpoliranih mjesečnih vrijednosti. Znanstveni rad s detaljnim opisom metodologije i verifikacije je u postupku recenzije (Perčec Tadić, Pasarić, Guijarro, 2022). Kompletna polja biti će dostupna nakon objavljivanja znanstvenog rada. Iz srednjih mjesečnih vrijednosti razdoblja 1981. -2010. pripremljeni su i rasteri srednjih godišnjih vrijednosti kalendarske godine. Diskutirana je reprezentativnost pojedine meteorološke postaje za ocjenu klime šireg pilot područja koja ovisi prvenstveno o rasponu nadmorskih visina područja i samom položaju meteorološke postaje. Nadmorske visine prikazane su digitalnim modelom terena horizontalne rezolucije 1000 m koji je korišten i kao prediktor kod regresijskog kriginga. U prilozima P1 i P2 nalaze se detalji dostave podataka s opisom dostavljenih mapa i datoteka.

2.2 Klimatološke značajke pilot područja Poreč

Prema korištenom digitalnom modelu terena horizontalne rezolucije 1000 m površina pilot područja Poreč iznosi 240 km². Najniža područja nalaze se na 7 m n.v., a najviša su na 429 m n.v. Histogram udjela nadmorskih visina prema razredima visina od 50 m pokazuje da je 25 % pilot područja na nadmorskim visinama do 100 m, 25 % na visinama od 100-200 m dok je ostatak područja na visinama iznad 200 m. Time podaci postaje Poreč, (geo. šir = 45.22, geo. duž = 13.6, n.m. = 15) nisu reprezentativni za viša područja te se ukazuje na vrijednost rastera u procjeni klimatskih osobitosti područja na kojima nema mjerenja. Stoga su klimatske prilike razdoblja 1981. – 2010. detaljnije prikazane rasterima mjesečnih i godišnjih srednjih temperatura zraka i količina oborine.

Slika 2.2.1. Digitalni model terena, histogram visina i granica sliva pilot područja Poreč na ortofoto podlozi.

Prostorna raspodjela srednjih mjesečnih temperatura zraka za normalu razdoblja 1981. – 2010. prikazana je na slici 2.2.2, a detaljnije su u tablici 2.2.1 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na malu nadmorsku visinu postaje Poreč, temperature zraka izmjerene na postaji (stupac lokacija u Tab. 2.2.1) usporedive su s najvišim vrijednostima iz rastera (stupac gr.maks) koje odgovaraju temperaturama na nižim nadmorskim visinama. Najniže mjesečne vrijednosti temperature zraka na pilot području su u siječnju, a najviše u srpnju. Raspon temperatura zraka na prostoru pilot područja uniformniji je u proljeće, a izrazitiji zimi (Tablica 2.2.1, stupac gr.ras) i odraz je raspona nadmorskih visina od oko 400 m. Srednja godišnja temperatura zraka pilot područja (slika 2.2.3) je od 10.6 °C na najvišim predjelima do 13.8 °C uz obalu uz srednjak 12.4 °C. Apsolutne razlike mjesečnih temperatura zraka iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 0.2 °C što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.2.2 Srednje mjesečne temperature zraka na pilot području Poreč za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.2.3 Srednja godišnja temperatura zraka na pilot području Poreč. Razdoblje 1981. – 2010.

Tablica 2.2.1 Srednja mjesečna i godišnja temperatura zraka izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti temperature zraka iz rastera za pilot područje Poreč, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	4.8	4.8	0.0	1.7	3.9	5.2	3.5
2	4.9	4.8	0.1	2.3	4.2	5.5	3.1
3	7.9	8.0	-0.1	5.6	7.2	8.5	2.9
4	11.9	12.0	-0.1	9.4	11.0	12.3	2.9
5	17.0	16.9	0.1	14.3	15.9	17.1	2.9
6	20.6	20.7	-0.1	17.8	19.5	20.9	3.1
7	23.3	23.5	-0.2	20.3	22.1	23.6	3.4
8	22.7	22.9	-0.2	19.6	21.5	23.1	3.4
9	18.4	18.6	-0.2	15.4	17.2	18.8	3.4
10	14.3	14.3	0.0	11.7	13.4	14.7	3.1
11	9.8	9.7	0.1	6.6	8.4	9.9	3.4
12	6.3	6.2	0.1	3.0	5.1	6.5	3.5
13	13.5	13.6	-0.1	10.6	12.4	13.8	3.2

Prostorna raspodjela srednjih mjesečnih količina oborine za normalu razdoblja 1981. – 2010. prikazana je na slici 2.2.4, a detaljnije su u tablici 2.2.2 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na malu nadmorsku visinu postaje Poreč, količine oborine izmjerene na postaji (stupac lokacija u Tab. 2.2.2) usporedive su s najnižim vrijednostima iz rastera (stupac gr.min) koje odgovaraju oborinama na nižim nadmorskim visinama. Najniže mjesečne količine oborine su u srpnju, a najviše u studenom. Raspon količina oborine na prostoru pilot područja najizraženiji je od listopada do prosinca kada je i oborine najviše (Tablica 2.2.2, stupac gr.ras). Srednja godišnja količina oborine pilot područja (slika 2.2.5) kreće se od 852 mm na najnižim predjelima uz obalu do 1258 mm na višim predjelima prema unutrašnjosti, uz srednjak od 1008 mm. Apsolutne razlike mjesečnih količina oborine iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 3 mm što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.2.4 Srednje mjesečne sume količine oborine na pilot području Poreč za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.2.5 Srednja godišnja količina oborine na pilot području Poreč. Razdoblje 1981. – 2010.

Tablica 2.2.2 Srednja mjesečna i godišnja količina oborine izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti količine oborine iz rastera za pilot područje Poreč, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	54	55	-1	54	64	82	28
2	51	50	1	50	60	77	28
3	52	53	-2	52	65	85	32
4	61	61	0	60	73	97	37
5	66	66	0	64	78	97	33
6	72	72	0	71	83	103	33
7	43	45	-2	44	55	73	29
8	80	80	0	77	88	105	29
9	95	94	2	91	103	117	26
10	102	99	3	97	112	137	40
11	106	103	3	101	118	148	47
12	80	80	0	79	95	122	43
13	856	868	-11	852	1008	1258	405

Slika 2.2.6 Srednja mjesečna temperatura zraka i količina oborine, minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) vrijednosti iz rastera za pilot područje Poreč, za razdoblje 1981. – 2010.

2.3 Klimatološke značajke pilot područja Gospić

Prema korištenom digitalnom modelu terena horizontalne rezolucije 1000 m površina pilot područja Gospić iznosi 238 km2. Najniža područja nalaze se na 707 m n.v., a najviša su na 1323 m n.v. Histogram udjela nadmorskih visina prema razredima visina od 50 m pokazuje da je 69 % pilot područja na nadmorskim visinama do 800 m. Time podaci postaje Gospić, (geo. šir = 44.55, geo. duž = 15.37, n.m. = 564) nisu reprezentativni za oko 31 % područja na visinama iznad 800 m te se ukazuje na vrijednost rastera u procjeni klimatskih osobitosti tih područja. Stoga su klimatske prilike razdoblja 1981. – 2010. detaljnije prikazane rasterima mjesečnih i godišnjih srednjih temperatura zraka i količina oborine.

Digitalni model terena [m]

Slika 2.3.1. Digitalni model visina, histogram visina i granica sliva pilot područja Gospić na ortofoto podlozi.

Prostorna raspodjela srednjih mjesečnih temperatura zraka za normalu razdoblja 1981. – 2010. prikazana je na slici 2.3.2, a detaljnije su u tablici 2.2.1 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na položaj postaje Gospić na nižim dijelovima područja, temperature zraka izmjerene na postaji (stupac lokacija u Tab. 2.3.1) usporedive su s najvišim vrijednostima iz rastera (stupac gr.maks) koje odgovaraju temperaturama na nižim nadmorskim visinama. Najniže mjesečne vrijednosti temperature zraka na pilot području su u siječnju, a najviše u srpnju. Raspon temperatura zraka na prostoru pilot područja (slika 2.3.3) je od 5.4 °C na najvišim predjelima do 9.7 °C uz obalu uz srednjak 8.7 °C. Apsolutne razlike mjesečnih temperatura zraka iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 0.1 °C što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.3.2 Srednje mjesečne temperature zraka na pilot području Gospić za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.3.3 Srednja godišnja temperatura zraka na pilot području Gospić. Razdoblje 1981. – 2010.

Tablica 2.3.1 Srednja mjesečna i godišnja temperatura zraka izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti temperature zraka iz rastera za pilot područje Gospić, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	-0.9	-0.9	0.0	-3.5	-0.5	0.8	4.3
2	0.3	0.3	0.0	-3.0	0.2	1.3	4.3
3	4.2	4.2	0.0	0.1	3.6	4.4	4.3
4	8.6	8.5	0.1	4.0	7.6	8.6	4.6
5	13.7	13.6	0.1	9.1	12.6	13.7	4.5
6	17.0	16.9	0.1	12.4	16.0	16.9	4.5
7	19.3	19.2	0.1	15.1	18.5	19.5	4.5
8	18.7	18.7	0.0	14.8	18.1	19.2	4.4
9	13.9	14.0	-0.1	10.2	13.5	14.5	4.3
10	9.7	9.7	0.0	6.4	9.6	10.5	4.1
11	4.5	4.6	-0.1	1.4	4.4	5.5	4.0
12	0.4	0.4	0.0	-2.3	0.7	2.0	4.3
13	9.1	9.1	0.0	5.4	8.7	9.7	4.3

Prostorna raspodjela srednjih mjesečnih količina oborine za normalu razdoblja 1981. – 2010. prikazana je na slici 2.3.4, a detaljnije su u tablici 2.3.2 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na položaj postaje Gospić, količine oborine izmjerene na postaji (stupac lokacija u Tab. 2.3.2) usporedive su s najnižim vrijednostima iz rastera (stupac gr.min) koje odgovaraju oborinama na nižim nadmorskim visinama. Najniže mjesečne količine oborine su u srpnju, a najviše u studenom. Raspon količina oborine na prostoru pilot područja uniformniji je ljeti, a izrazitiji zimi (Tablica 2.3.2, stupac gr.ras). Srednja godišnja količina oborine pilot područja (slika 2.3.5) kreće se od 1467 mm na najnižim predjelima uz obalu do 2828 mm na višim predjelima prema unutrašnjosti, uz srednjak od 1860 mm. Apsolutne razlike mjesečnih količina oborine iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 33 mm i negativne su što ukazuje na precjenjivanje procjene regresijskim krigingom na lokaciji postaje što se može opravdati i nešto višom nadmorskom visinom DEM-a horizontalne rezolucije 1000 m.

Srednja mjesečna količina oborine [mm] Razdoblje 1981.-2010.

Slika 2.3.4 Srednje mjesečne sume količine oborine na pilot području Gospić za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.3.5 Srednja godišnja količina oborine na pilot području Gospić. Razdoblje 1981. – 2010.

Tablica 2.3.2 Srednja mjesečna i godišnja količina oborine izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti količine oborine iz rastera za pilot područje Gospić, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	103	132	-29	124	160	255	131
2	99	122	-23	116	141	217	101
3	95	117	-22	111	135	200	89
4	104	124	-20	120	142	210	91
5	100	113	-13	107	124	171	64
6	93	98	-6	96	105	134	38
7	51	54	-3	49	61	83	34
8	81	83	-3	82	92	117	36
9	149	160	-11	153	174	228	74
10	150	170	-20	163	190	261	98
11	178	201	-24	192	227	335	143
12	151	184	-33	175	216	342	168
13	1355	1526	-172	1467	1860	2828	1361

Slika 2.3.6 Srednja mjesečna temperatura zraka i količina oborine, minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) vrijednosti iz rastera za pilot područje Gospić, za razdoblje 1981. – 2010.

2.4 Klimatološke značajke pilot područja Zadar

Prema korištenom digitalnom modelu terena horizontalne rezolucije 1000 m površina pilot područja Zadar iznosi 118 km2. Najniža područja nalaze se na 28 m n.v., a najviša su na 97 m n.v. Histogram udjela nadmorskih visina prema razredima visina od 100 m pokazuje da je 100 % pilot područja na nadmorskim visinama do 100 m. Time su podaci postaje Zadar, (geo. šir = 44.13, geo. duž = 15.21, n.m. = 5) reprezentativni za niža područja. Na višim dijelovima područja klimatske prilike razdoblja 1981. – 2010. detaljnije se mogu ocijeniti rasterima mjesečnih i godišnjih srednjih temperatura zraka i količina oborine.

Slika 2.4.1. Digitalni model visina, histogram visina i granica sliva pilot područja Zadar na ortofoto podlozi.

Prostorna raspodjela srednjih mjesečnih temperatura zraka za normalu razdoblja 1981. – 2010. prikazana je na slici 2.4.2, a detaljnije su u tablici 2.4.1 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na malu nadmorsku visinu postaje Zadar, temperature zraka izmjerene na postaji (stupac lokacija u Tab. 2.4.1) usporedive su s najvišim vrijednostima iz rastera (stupac gr.maks) koje odgovaraju temperaturama na nižim nadmorskim visinama. Najniže mjesečne vrijednosti temperature zraka na pilot području su u siječnju, a najviše u srpnju. Raspon temperatura zraka na prostoru pilot područja uniformniji je ljeti, a izrazitiji zimi (Tablica 2.4.1, stupac gr.ras). Srednja godišnja temperatura zraka pilot područja (slika 2.4.3) je od 14.2 °C na višim predjelima do 15.2 °C na nižim uz srednjak 14.9 °C. Apsolutne razlike mjesečnih temperatura zraka iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 0.2 °C što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.4.2 Srednje mjesečne temperature zraka na pilot području Zadar za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.4.3 Srednja godišnja temperatura zraka na pilot području Zadar. Razdoblje 1981. – 2010.

Tablica 2.4.1 Srednja mjesečna i godišnja temperatura zraka izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti temperature zraka iz rastera za pilot područje Zadar, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	7.3	7.2	0.1	5.3	6.5	7.3	2.0
2	7.3	7.2	0.1	5.6	6.7	7.3	1.7
3	9.9	9.8	0.1	8.8	9.5	9.8	1.1
4	13.4	13.4	0.0	12.5	13.1	13.4	0.9
5	18.1	18.1	0.0	17.5	17.9	18.2	0.7
6	21.8	21.9	-0.1	21.3	21.7	22.0	0.6
7	24.6	24.8	-0.2	24.3	24.7	24.9	0.5
8	24.2	24.3	-0.1	23.8	24.2	24.4	0.6
9	20.1	20.0	0.1	19.3	19.8	20.1	0.8
10	16.3	16.2	0.1	14.8	15.7	16.3	1.5
11	11.8	11.6	0.2	10.1	11.1	11.6	1.5
12	8.5	8.4	0.1	6.6	7.7	8.5	1.9
13	15.3	15.2	0.1	14.2	14.9	15.2	1.0

Prostorna raspodjela srednjih mjesečnih količina oborine za normalu razdoblja 1981. – 2010. prikazana je na slici 2.4.4, a detaljnije su u tablici 2.4.2 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na malu nadmorsku visinu postaje Zadar, količine oborine izmjerene na postaji (stupac lokacija u Tab. 2.4.2) usporedive su s najnižim i srednjim vrijednostima iz rastera (stupac gr.min) na općenito području malog raspona nadmorskih visina. Najniže mjesečne količine oborine su u srpnju, a najviše u studenom. Raspon količina oborine na prostoru pilot područja je neznatan (Tablica 2.3.2, stupac gr.ras). Srednja godišnja količina oborine pilot područja (slika 2.4.5) kreće se od 856 mm na najnižim predjelima uz obalu do 933 mm na višim predjelima prema unutrašnjosti, uz srednjak od 903 mm. Apsolutne razlike mjesečnih količina oborine iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 5 mm što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.4.4 Srednje mjesečne sume količine oborine na pilot području Zadar za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.4.5 Srednja godišnja količina oborine na pilot području Zadar. Razdoblje 1981. – 2010.

Tablica 2.4.2 Srednja mjesečna i godišnja količina oborine izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti količine oborine iz rastera za pilot područje Zadar, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	74	79	-5	77	80	83	6
2	64	66	-2	63	67	69	6
3	60	64	-3	63	66	69	5
4	62	65	-3	64	67	69	5
5	61	62	-1	58	63	66	7
6	49	52	-4	52	54	57	5
7	28	29	-1	27	29	30	3
8	49	51	-2	49	52	54	5
9	107	102	5	92	101	107	16
10	95	96	-2	95	100	104	8
11	108	112	-4	109	115	119	10
12	97	102	-5	100	105	109	9
13	854	879	-25	856	903	933	78

Slika 2.4.6 Srednja mjesečna temperatura zraka i količina oborine, minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) vrijednosti iz rastera za pilot područje Zadar, za razdoblje 1981. – 2010.

2.5 Klimatološke značajke pilot područja Biograd na Moru

Prema korištenom digitalnom modelu terena horizontalne rezolucije 1000 m površina pilot područja Biograd na Moru iznosi 27 km2. Najniža područja nalaze se na 32 m n.v., a najviša su na 47 m n.v. Time su podaci postaje Biograd na Moru, (geo. šir = 43.95, geo. duž = 15.45, n.m. = 8) reprezentativni za opis klime ovog pilot područja. Klimatske prilike razdoblja 1981. – 2010. prikazane rasterima mjesečnih i godišnjih srednjih temperatura zraka i količina oborine ne pokazuju gotovo nikakvu prostornu varijablilnost, već služe za prikaz godišnjeg hoda.

Granice
Granice
Naselje Biograd na moru
Digitalni ortofoto u mjerilu 1:5000_2019/20 godina

Slika 2.5.1. Digitalni model visina i granica sliva pilot područja Biograd na Moru na ortofoto podlozi.

Prostorna raspodjela srednjih mjesečnih temperatura zraka za normalu razdoblja 1981. – 2010. prikazana je na slici 2.5.2, a detaljnije su u tablici 2.5.1 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na gotovo ravan teren, temperature zraka izmjerene na postaji Biograd na Moru (stupac lokacija u Tab. 2.5.1) usporedive su sa svim vrijednostima iz rastera (stupci hr.min, gr.sred i gr.maks). Najniže mjesečne vrijednosti temperature zraka na pilot području su u siječnju, a najviše u srpnju. Raspon temperatura zraka na prostoru pilot područja je uniforman (Tablica 2.5.1, stupac gr.ras). Srednja godišnja temperatura zraka pilot područja (slika 2.5.3) je od 15.0 °C do 15.2 °C uz srednjak 15.1 °C. Apsolutne razlike mjesečnih temperatura zraka iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 0.2 °C što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.5.2 Srednje mjesečne temperature zraka na pilot području Biograd na Moru za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.5.3 Srednja godišnja temperatura zraka na pilot području Biograd na Moru. Razdoblje 1981. – 2010.

Tablica 2.5.1 Srednja mjesečna i godišnja temperatura zraka izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti temperature zraka iz rastera za pilot područje Biograd na Moru, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	6.6	6.6	0.0	6.5	6.7	6.8	0.2
2	6.8	6.9	-0.1	6.8	7.0	7.0	0.2
3	9.6	9.7	-0.1	9.6	9.8	9.8	0.2
4	13.3	13.3	0.0	13.2	13.3	13.4	0.2
5	18.2	18.2	0.0	18.1	18.2	18.2	0.1
6	21.8	21.9	-0.1	21.9	22.0	22.0	0.2
7	24.8	24.9	-0.1	24.8	24.9	24.9	0.1
8	24.2	24.4	-0.2	24.3	24.4	24.5	0.2
9	19.9	20.0	-0.1	19.9	20.1	20.1	0.2
10	15.8	15.9	-0.1	15.8	16.0	16.1	0.2
11	11.1	11.2	-0.1	11.0	11.2	11.3	0.3
12	7.7	7.8	-0.1	7.7	7.9	8.0	0.3
13	15.0	15.1	-0.1	15.0	15.1	15.2	0.2

Prostorna raspodjela srednjih mjesečnih količina oborine za normalu razdoblja 1981. – 2010. prikazana je na slici 2.5.4, a detaljnije su u tablici 2.5.2 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na gotovo ravan teren, količine oborine izmjerene na postaji Biograd na Moru (stupac lokacija u Tab. 2.5.2) usporedive su sa svim vrijednostima iz rastera (stupci hr.min, gr.sred i gr.maks). Najniže mjesečne količine oborine su u srpnju, a najviše u studenom. Raspon količina oborine na prostoru pilot područja je uniforman (Tablica 2.5.2, stupac gr.ras). Srednja godišnja količina oborine pilot područja (slika 2.5.5) kreće se od 795 mm do 820 mm, uz srednjak od 807 mm. Apsolutne razlike mjesečnih količina oborine iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 5 mm što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.5.4 Srednje mjesečne sume količine oborine na pilot području Biograd na Moru za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.5.5 Srednja godišnja količina oborine na pilot području Biograd na Moru. Razdoblje 1981. – 2010.

Tablica 2.5.2 Srednja mjesečna i godišnja količina oborine izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti količine oborine iz rastera za pilot područje Biograd na Moru, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	78	74	4	72	73	75	2
2	61	60	1	60	61	61	1
3	66	63	2	63	64	64	1
4	63	62	1	62	63	63	1
5	51	52	-1	51	52	54	3
6	56	53	3	53	54	54	1
7	23	25	-2	25	25	26	1
8	45	44	1	43	44	45	2
9	75	80	-4	78	80	82	4
10	98	92	5	90	92	94	4
11	104	104	0	103	104	106	3
12	99	94	5	92	93	95	3
13	815	808	8	795	807	820	26

Slika 2.5.6 Srednja mjesečna temperatura zraka i količina oborine, minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) vrijednosti iz rastera za pilot područje Biograd na Moru, za razdoblje 1981. – 2010.

2.6 Klimatološke značajke pilot područja Split

Prema korištenom digitalnom modelu terena horizontalne rezolucije 1000 m površina pilot područja Split iznosi 32 km². Najniža područja nalaze se na 27 m n.v., a najviša su na 286 m n.v. Histogram udjela nadmorskih visina prema razredima visina od 100 m pokazuje da je 91 % pilot područja na nadmorskim visinama do 100 m, 6 % na visinama od 100-200 m dok je ostatak područja na visinama iznad 200 m. Time su podaci postaje Split - Marjan, (geo. šir = 43.51, geo. duž = 16.43, n.m. = 122) manje reprezentativni za područja iznad 200 m te se ukazuje na vrijednost rastera u procjeni klimatskih osobitosti područja na kojima nema mjerenja. Stoga su klimatske prilike razdoblja 1981. – 2010. detaljnije prikazane rasterima mjesečnih i godišnjih srednjih temperatura zraka i količina oborine.

ò

100

200

Granice Granica sliva Naselje Split Digitalni ortofoto u mjerilu 1:5000_2019/20 godina

Slika 2.6.1. Digitalni model visina, histogram visina i granica sliva pilot područja Split na ortofoto podlozi.

Prostorna raspodjela srednjih mjesečnih temperatura zraka za normalu razdoblja 1981. – 2010. prikazana je na slici 2.6.2, a detaljnije su u tablici 2.6.1 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Temperature zraka izmjerene na postaji Split – Marjan (stupac lokacija u Tab. 2.6.1) usporedive su s najvišim vrijednostima iz rastera (stupac gr.maks). Najniže mjesečne vrijednosti temperature zraka na pilot području su u siječnju, a najviše u srpnju. Raspon temperatura zraka na prostoru pilot područja je manji je ljeti, a izrazitiji zimi (Tablica 2.6.1, stupac gr.ras). Srednja godišnja temperatura zraka pilot područja (slika 2.6.3) je od 14.1 °C na višim predjelima do 16.4 °C na nižim uz srednjak 16 °C. Na lokaciji postaje se uočava nešto veće podcjenjivanje procjene regresijskim krigingom (stupac lok.grid u tablici 2.6.1) na u odnosu na vrijednosti izmjerene na postaji (stupac lokacija u Tablici 2.6.1) tijekom toplog dijela godine od lipnja do rujna uz razlike (stupac loc.bias u tablici 2.6.1) od 0.4 °C do 0.7 °C.

Slika 2.6.2 Srednje mjesečne temperature zraka na pilot području Split za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.6.3 Srednja godišnja temperatura zraka na pilot području Split. Razdoblje 1981. – 2010.

Tablica 2.6.1 Srednja mjesečna i godišnja temperatura zraka izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti temperature zraka iz rastera za pilot područje Split, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	8.0	7.9	0.1	5.5	7.6	8.2	2.7
2	8.1	8.0	0.1	5.8	7.7	8.3	2.5
3	10.8	10.6	0.2	8.7	10.5	10.9	2.2
4	14.4	14.2	0.2	12.2	14.1	14.5	2.3
5	19.5	19.3	0.2	17.3	19.2	19.6	2.3
6	23.4	23.0	0.4	21.1	22.9	23.3	2.3
7	26.4	25.8	0.6	24.1	25.9	26.2	2.1
8	26.0	25.3	0.7	23.7	25.5	25.8	2.1
9	21.4	20.9	0.5	19.1	20.9	21.2	2.2
10	17.3	17.2	0.1	14.8	16.7	17.5	2.6
11	12.4	12.2	0.2	10.2	12.1	12.5	2.2
12	9.1	9.0	0.1	6.7	8.7	9.3	2.7
13	16.4	16.0	0.4	14.1	16.0	16.4	2.3

Prostorna raspodjela srednjih mjesečnih količina oborine za normalu razdoblja 1981. – 2010. prikazana je na slici 2.6.4, a detaljnije su u tablici 2.6.2 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Količine oborine izmjerene na postaji Split – Marjan (stupac lokacija u

tablici 2.6.2) usporedive su s najnižim vrijednostima iz rastera (stupac gr.min). Najniže mjesečne količine oborine su u srpnju, a najviše u studenom. Raspon količina oborine na prostoru pilot područja uniformniji je ljeti, a izrazitiji zimi (tablica 2.6.2, stupac gr.ras). Srednja godišnja količina oborine pilot područja (slika 2.6.5) kreće se od 788 mm na najnižim predjelima uz obalu do 1012 mm na višim predjelima prema unutrašnjosti, uz srednjak od 832 mm. Apsolutne razlike mjesečnih količina oborine iz mjerenja i vrijednosti iz rastera na lokaciji postaje ne prelaze 16 mm što ukazuje na kvalitetu procjene regresijskim krigingom.

Slika 2.6.4 Srednje mjesečne sume količine oborine na pilot području Split za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.6.5 Srednja godišnja količina oborine na pilot području Split. Razdoblje 1981. – 2010.

Tablica 2.6.2 Srednja mjesečna i godišnja količina oborine izmjerene na lokaciji meteorološke postaje (lokacija), procijenjena iz rastera (lok.grid) i njihova razlika (lok.bias). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti količine oborine iz rastera za pilot područje Split, za razdoblje 1981. – 2010.

mjesec	lokacija	lok.grid	lok.bias	gr.min	gr.sred	gr.maks	gr.ras
1	69	78	-10	75	79	98	24
2	65	73	-8	69	73	90	21
3	63	72	-9	69	73	91	22
4	62	67	-5	64	68	83	19
5	55	57	-2	55	57	68	13
6	49	51	-3	49	52	60	11
7	22	22	-1	21	22	27	6
8	37	39	-2	34	38	44	10
9	72	75	-3	72	74	84	12
10	78	86	-8	83	86	101	17
11	112	127	-15	121	127	155	33
12	92	108	-16	102	109	137	35
13	776	837	-61	788	832	1012	223

Slika 2.6.6 Srednja mjesečna temperatura zraka i količina oborine, minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) vrijednosti iz rastera za pilot područje Split, za razdoblje 1981. – 2010.

2.7 Klimatološke značajke pilot područja Metković

Prema korištenom digitalnom modelu terena horizontalne rezolucije 1000 m površina pilot područja Metkovic iznosi 47 km². Najniža područja nalaze se na 25 m n.v., a najviša su na 107 m n.v. Histogram udjela nadmorskih visina prema razredima visina od 100 m pokazuje da je 98 % pilot područja na nadmorskim visinama do 100 m, a 2 % na visinama od do 200 m. Najbliža meteorološka postaja Ploče (geo. šir = 43.05, geo. duž = 17.44, n.m. = 2) ne nalazi se u granicama pilot područja Metković pa je tim značajnija analiza klimatskih prilika razdoblja 1981. – 2010. korištenjem rastera mjesečnih i godišnjih srednjih temperatura zraka i količina oborine.

Slika 2.7.1. Digitalni model visina, histogram visina i granica sliva pilot područja Metković na ortofoto podlozi.

Prostorna raspodjela srednjih mjesečnih temperatura zraka za normalu razdoblja 1981. – 2010. prikazana je na slici 2.7.2, a detaljnije su u tablici 2.7.1 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na malu nadmorsku visinu postaje Ploče, temperature zraka izmjerene na postaji (stupac lokacija u tablici 2.7.1) usporedive su sa srednjim i najvišim vrijednostima iz rastera (stupci gr.sred i gr.maks). Najniže mjesečne vrijednosti temperature zraka na pilot području su u siječnju, a najviše u srpnju. Raspon temperatura zraka na prostoru pilot područja uniformniji je ljeti, a izrazitiji zimi (tablica 2.7.1, stupac gr.ras). Srednja godišnja temperatura zraka pilot područja (slika 2.7.3) je od 14.8 °C do 15.9 °C uz srednjak 15.5 °C. Niie moguće na isti način kao za ostala pilot područja ocijeniti odstupanje procjene na lokaciji postaje obzirom da se postaja ne nalazi unutar granica područja.

Slika 2.7.2 Srednje mjesečne temperature zraka na pilot području Metković za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.7.3 Srednja godišnja temperatura zraka na pilot području Metković. Razdoblje 1981. – 2010.

Tablica 2.7.1 Srednja mjesečna i godišnja temperatura zraka izmjerene na lokaciji meteorološke postaje (lokacija). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti temperature zraka iz rastera za pilot područje Metković, za razdoblje 1981. – 2010.

mjesec	lokacija	gr.min	gr.sred	gr.maks	gr.ras
1	6.8	5.8	6.5	7.4	1.6
2	7.5	6.5	7.2	8.0	1.5
3	10.5	9.6	10.3	10.9	1.3
4	14.1	13.1	13.8	14.3	1.3
5	18.8	18.0	18.7	19.1	1.2
6	22.5	21.9	22.5	22.8	1.0
7	25.4	24.8	25.4	25.5	0.7
8	25.0	24.5	25.1	25.2	0.7
9	20.7	20.0	20.6	20.9	0.9
10	16.3	15.6	16.4	17.2	1.6
11	11.4	10.6	11.2	11.7	1.1
12	7.9	6.9	7.6	8.6	1.7
13	15.6	14.8	15.5	15.9	1.1

Prostorna raspodjela srednjih mjesečnih količina oborine za normalu razdoblja 1981. – 2010. prikazana je na slici 2.7.4, a detaljnije su u tablici 2.7.2 dane minimalne, srednje i maksimalne vrijednosti mjesečnih rastera. Obzirom na malu nadmorsku visinu postaje Ploče, količine oborine izmjerene na postaji (stupac lokacija u tablici 2.7.2) usporedive su s najnižim vrijednostima iz rastera (stupac gr.min). Najniže mjesečne količine oborine su u srpnju, a najviše u studenom. Raspon količina oborine na prostoru pilot područja uniformniji je ljeti, a izrazitiji u studenom i prosincu (tablica 2.7.2, stupac gr.ras). Srednja godišnja količina oborine pilot područja (slika 2.7.5) kreće se od 1125 mm do 1215 mm, uz srednjak od 1162 mm. Niie moguće na isti način kao za ostala pilot područja ocijeniti odstupanje procjene na lokaciji postaje obzirom da se postaja ne nalazi unutar granica područja.

Slika 2.7.4 Srednje mjesečne sume količine oborine na pilot području Metković za normalu razdoblja 1981. – 2010. Paneli su naslovljeni skraćenom oznakom mjeseca (SIJ,..,PRO).

Slika 2.7.5 Srednja godišnja količina oborine na pilot području Metković. Razdoblje 1981. – 2010.

Tablica 2.7.2 Srednja mjesečna i godišnja količina oborine izmjerene na lokaciji meteorološke postaje (lokacija). Dalje slijede minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) i raspon (gr.ras) vrijednosti količine oborine iz rastera za pilot područje Metković, za razdoblje 1981. – 2010.

mjesec	lokacija	gr.min	gr.sred	gr.maks	gr.ras
1	106	110	113	119	9
2	97	102	104	110	8
3	104	111	115	121	10
4	82	85	87	91	7
5	56	63	65	68	5
6	50	53	53	56	3
7	26	28	30	32	4
8	52	55	55	56	2
9	91	93	96	99	6
10	108	127	130	136	10
11	157	160	164	172	13
12	147	155	159	168	14
13	1077	1125	1162	1215	90

Slika 2.7.6 Srednja mjesečna temperatura zraka i količina oborine, minimalne (gr.min), srednje (gr.sred) i maksimalne (gr.maks) vrijednosti iz rastera za pilot područje Metković, za razdoblje 1981. – 2010.

2.8 Usporedba mjesečnih količina oborina na pilot područjima

Na slici 2.8.1. dan je usporedni prikaz unutar godišnjeg hoda srednjih mjesečnih količina oborina po pilot područjima. Može se primijetiti kako najveće mjesečne količine oborine ima pilot područje Gospić, dok su vrijednosti na pilot područjima Poreč, Zadar, Biograd na Moru, Split i Metković vrlo slične. Najveće mjesečne količine na svim područjima javljaju se u jesenjim mjesecima (rujan – prosinac).

Slika 2.8.1 Usporedba srednjih mjesečnih količina oborina na pilot područjima (1981. – 2010.)

3 Metodologija provedenih obrada oborina

3.1 Analiza prihvatljivosti ombrografskih podataka

Za provedbu analize ekstremnih količina oborine koja je nužna za potrebe procjene opasnosti od pluvijalnih poplava koje ovise o oborinskom režimu potrebno je poznavati dinamiku oborine koja padne u kratkim vremenskim intervalima. Za analizu kratkotrajnih količina oborine koriste se zapisi ombrografa. Ombrograf (ili pluviograf) je automatski mjerni instrument za neprekidno praćenje količine i trajanja oborine. Na temelju njegovog zapisa, ombrograma (pluviograma), moguće je odrediti vrijeme početka, završetka i ukupno trajanje te jačinu oborine. U Državnom hidrometeorološkom zavodu koristi se tzv. Hellmannov ombrograf koji radi na principu plovka (Pandžić i dr., 2008). Neki ombrografi imaju uređaj za grijanje pomoću električne energije koji trebaju zagrijati unutrašnjost ombrografa toliko da se održi tekuće stanje oborine u posudi. Na taj se način produžuje razdoblje uporabe ombrografa uključujući ona kada je temperatura zraka ispod 0°C. U ranijim godinama uglavnom nije bilo uređaja za grijanje pa ombrografi u hladnom dijelu godine nisu bili aktivni. U kontinentalnom području gdje se maksimum oborine može očekivati u toplom dijelu godine, nedostatak podataka u zimskim mjesecima ne predstavlja problem. Međutim, na području Jadrana gdje prevladava mediteranska klima maksimum oborine se može očekivati u hladnom dijelu godine pa u pojedinim godinama kad nije bilo mjerenja u svim mjesecima, postoji mogućnost da stvarni maksimum nije zabilježen. U tom slučaju, ako se u statističke analize uključe samo oni podaci koji su raspoloživi u toplom dijelu godine nepouzdanost procjene ekstrema se povećava.

Zbog toga je nužno provesti dodatnu kontrolu pojavnosti intenzivne oborine. U ovom poglavlju opisana je analiza prihvatljivosti ombrografskih podataka usporedbom mjerenja maksimalnih dnevnih količina oborine prema ombrografu i prema pripadnom kišomjeru iz zajedničkog raspoloživog razdoblja na pet lokacija koje su najbliže pojedinom pilot području projekta STREAM. Popis postaja i razdoblje raspoloživih podataka nalazi se u tablici 3.1.1. U zadnjem stupcu tablice navedeno je i raspoloživo razdoblje mjerenja na kišomjernim postajama koje je u nastavku studije korišteno za analizu godišnjih maksimalnih dnevnih količina oborine. Treba napomenuti da se količina oborine predstavlja količinu sakupljenu od 7 sati po lokalnom vremenu, a dnevna količina oborine predstavlja količinu sakupljenu od 7 sati prethodnog do 7 sati onog dana u kojem se mjeri i na koji se izmjereni podatak odnosi. Za usporedbu dnevnih maksimuma izmjerenih prema kišomjeru i prema ombrografu, iz izvornih 5-minutnih ombrografskih zapisa izračunata je ukupna dnevna količina oborine za iste termine kao na kišomjernoj postaji. Kako bi utvrdili moguće sumnjive godišnje maksimume u podacima ombrografa, korištena je modificirana metoda usporedbe koja je

korištena u studiji *Upravljanje rizicima od poplava uslijed jakih oborina – RAINMAN* (Građevinski fakultet u Rijeci i DHMZ, 2019).

Tablica 3.1.1. Popis ombrografskih i kišomjernih postaja (stupac Postaja) analiziranih u ovoj studiji za pojedina pilot područja s pripadnim raspoloživim dugogodišnjim razdobljem mjerenja (stupci Razdoblje)

Pilot područje	Postaja	Razdoblje (ombrograf)	Razdoblje (kišomjer)
Poreč	Poreč	19842020.	1981. – 2020.
Gospić	Gospić	19612020.	1961. – 2020.
Zadar	Zadar	19612020.	1961. – 2020.
Biograd na Moru	Zadar	19612020.	1961. – 2020.
Split	Split - Marjan	19612020.	1961. – 2020.
Metković	Ploče	19682020.	1978. – 2020.

Za vremenske nizove dnevne količine oborine (od 7 h prethodnog dana do 7 h tekućeg dana) dobivene iz ombrografa i pripadnog kišomjera na istoj lokaciji postaje određen je za svaku godinu apsolutni godišnji maksimum i datum njegovog pojavljivanja. Godišnje maksimalne dnevne vrijednosti ćemo u nastavku teksta označiti s $Rd_{maks.}$ Ovdje treba napomenuti da su ombrografski podaci, prilikom njihove digitalizacije, prošli redovnu kontrolu tako da su uspoređeni s pripadnim kišomjernim podacima prema kojoj razlike u dnevnim vrijednostima ne bi trebale biti veće od 20%.

Za potrebe ove studije, dodatno su za svaku pojedinačnu godinu uspoređeni iznosi godišnjih dnevnih maksimuma oborine prema ombrografu i kišomjeru te mjeseci njihovog. Za one godine u kojima se podudaraju mjeseci pojavljivanja maksimuma prema kišomjeru i ombrografu te međusobne razlike u njihovim iznosima nisu veće od 20%, pripadni niz se preporučuje za daljnju analizu bez obzira i na moguću nepotpunost ombrografskog niza. Za one godine u kojima nije bilo ombrografskih mjerenja tijekom cijele godine, a mjesec pojavljivanja dnevnog maksimuma se ne podudara s mjesecom pojavljivanja dnevne maksimalne količine oborine prema kišomjeru i ako je razlika između *Rd_kiš_{maks}* i *Rd_omb_{maks}* veća od 20%, te godine su izdvojene kao suspektne.

Budući da su u nastavku ove studije analizirane količine oborine različitog trajanja (10 do 60 minuta te 2, 4, 6, 12, 18 i 24 sata) za koja nije moguće provesti direktne usporedbe, za konačnu odluku o uključivanju ili isključivanju izdvojenih suspektnih godina korišteni su dodatni kriteriji:

1) Količine oborine za pojedina trajanja su rangirane od najmanjih prema najvećim vrijednostima. Ako se vrijednosti u suspektnoj godini za većinu trajanja nalaze među deset najmanjih vrijednosti cijelog niza, tada se ta godina smatra nepouzdanom i izuzeta je iz analize.

2) Dodatno su izdvojene i granično suspektne godine za koje je rang manji od 10 samo za mali broj trajanja.

3.2 Analiza nizova godišnjih maksimalnih kratkotrajnih i višednevnih količina oborine

U ovoj studiji najprije su analizirane maksimalne godišnje količine oborine za sljedeća trajanja: 10, 20, 30, 40, 50 i 60 minuta, 2, 4, 6, 12, 18 i 24 sata te 1 do 5 dana. Za pet meteoroloških postaja najbližih predmetnim lokacijama projekta STREAM (tablica 3.1.1) provedena je osnovna statistika pripadnih nizova kako bi se utvrdile prosječne vrijednosti i međugodišnja varijabilnost oborine. Analize nizova do 24h provedene su prema podacima s ombrografskih postaja, dok su analize dnevnih i višednevnih količina provedene prema podacima s kišomjernih postaja prema najduljem raspoloživom razdoblju.

Trend maksimalnih godišnjih količina oborine za pojedina trajanja u dugogodišnjem razdoblju određen je procjenom Senovog ili Kendallovog tau nagiba (Sen, 1968). Nagib se procjenjuje određivanjem *N* nagiba *Q* u vremenskom nizu:

$$Q = \frac{x_{t'} - x_t}{t' - t}$$
(3.2.1)

gdje su x_t i x_t vrijednosti elemenata niza u vremenu t' odnosno t, za t' > t. N je broj parova podataka za koje vrijedi t' > t i jednak je n (n - 1)/2, gdje je n duljina niza. Senov nagib je medijan tih Nvrijednosti. Zbog toga je statistički otporniji od nagiba dobivenog uobičajenom linearnom regresijom. Statistička značajnost trenda je ocijenjena pomoću neparametarskog Mann-Kendallovog testa (Helsel i Hirsch, 2002). Kako Mann-Kendallov test koristi rangove, tj. ne uzima u obzir same vrijednosti podataka već njihov međusobni odnos, testom se ocjenjuje koliko je značajno monotono povećanje ili smanjenje analizirane varijable tijekom vremena (Cindrić i sur. 2014). Premda je u ovoj studiji analiza trenda provedena za sve postaje i njihova raspoloživa razdoblja mjerenja, treba imati na umu da postojanje prekida u nizovima godišnjih maksimalnih podataka može utjecati na smanjenu pouzdanost rezultata trenda (Slater i Villarini, 2017).

3.3 Analiza vjerojatnosti pojave maksimalnih količina oborina

Analiza vjerojatnosti pojave maksimalne godišnje količine oborine na pet predmetnih lokacija za odabrana trajanja provedena je pomoću opće razdiobe ekstrema (engl. *Generalized extreme value distribution*, GEV) (Coles, 2001). Ta razdioba se u meteorološkoj (i hidrološkoj) praksi najčešće

primjenjuje na godišnje maksimume pod uvjetom da se unutar godine nalazi dovoljan broj podataka koji se mogu smatrati međusobno nezavisnima.

Kumulativna funkcija razdiobe GEV ima sljedeći oblik (Coles 2001):

$$G(x) = \exp\left\{-\left[1 + \frac{k}{\alpha}(x - x_0)^{-\frac{1}{k}}\right]\right\}$$
(3.3.1)

gdje je *k* parameter oblika (zakrivljenosti), α je parameter skale i x_0 parametar lokacije. U ovoj notaciji, razdioba je neograničena u desno ako je k > 0 s donjom granicom jednakom $x_0 - \alpha / k$. Takva razdioba se naziva Frechetova ili razdioba ekstrema tipa 2. U slučaju k < 0 razdioba je neograničena u lijevo s gornjom granicom $x_0 - \alpha / k$ i naziva se Weibullova ili razdioba ekstrema tipa 3. U graničnom slučaju kada k teži nuli, razdioba teži Gumbelovoj (tipa 1), neograničenoj (- $\infty < x < \infty$) razdiobi.

U praksi je uobičajeno teorijsku kumulativnu razdiobu izraziti pomoću njezine inverzne funkcije, odnosno funkcije kvantila, x(G). Ako pretpostavimo da imamo jednu realizaciju (opažanje) u jedinici vremena (jedna godina ako se radi o godišnjim maksimumima), onda se kvantil x(G) može iskazati i kao povratna vrijednost x_T za odgovarajući povratni period T=1/p, gdje je p =1-G. Povratna vrijednost za razdiobu GEV može se izraziti na sljedeći način:

$$x_{T} = \begin{cases} x_{0} - \frac{\alpha}{k} [1 - y_{p}^{-k}] & za \ k \neq 0 \\ x_{0} - \alpha \log(y_{p}) & za \ k = 0 \end{cases}$$
(3.3.2)

gdje je $y_p = -\log(1-p)$.

Za određivanje pouzdanih procjena povratnih vrijednosti ne preporučuju se procjene za povratna razdoblja dulja od dvostruke duljine raspoloživog niza mjerenja (Klein Tank i sur. 2009). U ovoj studiji su procijenjene očekivane maksimalne količine oborine pojedinog trajanja za povratna razdoblja 2, 5, 10, 25, 50 i 100 godina te pripadni intervali pouzdanosti na razini značajnosti 95 %.

3.4 Generiranje HTP i ITP krivulja na pilot područjima

Za potrebe tradicionalnog načina dimenzioniranja odvodnih sustava (procjena maksimalnog protoka) značajke kratkotrajnih jakih oborina iskazuju se u vidu HTP (Količina oborine - Trajanje-Povratni period) ili ITP (Intenzitet oborine – Trajanje – Povratni period). Ta se obrada provodi na temelju prilagođavanja više tipova krivulja te testiranjem uspješnosti njihova prilagođavanja

proračunatim vrijednostima maksimalnih količina (intenziteta) oborina različitih trajanja i odabranih vjerojatnosti pojave. Kao mjerilo dobrote prilagođavanja u danom je dokumentu korišten koeficijent determinacije R²:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \tag{3.4.1}$$

uz sljedeće izraze:

$$SS_{res} = \sum_{i} (y_i - f_i)^2$$
 (3.4.2)

$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$
 (3.4.3)

gdje je y_i poznata vrijednost količine ili intenziteta oborine, f procijenjena vrijednost količine ili intenziteta oborine odabranom krivuljom, \bar{y} aritmetička sredina svih poznatih vrijednosti količine ili intenziteta oborine.

Sukladnost krivulje i poznatih vrijednost je veća što je R² bliži jedinici.

Pri tome je moguće koristiti dva pristupa definiranja HTP ili ITP krivulja – izjednačavanje provesti za svaki povratni period sa zasebnom krivuljom ili pak takvo izjednačenje provesti s jednom krivuljom za sve povratne periode. U radu Bonaccija (1994) iscrpno su prikazani uglavnom svi u praksi najčešće korišteni analitički oblici tih krivulja te se taj dio neće detaljnije razmatrati u ovoj studiji. Parametri tih krivulja određuju se na osnovu regresijskih i višestruko regresijskih analiza po teoriji najmanjih kvadrata.

Vrlo rijetko je moguće pronaći krivulju koja bi se uspješno prilagođavala ulaznim podacima u čitavom svom rasponu, tj. od 5 (ili 10) minuta do ukupno 24 sata. Razlog tome je prirodni karakter režima oborina koje su naglašenije tijekom trajanja kraćih trajanja – u našim je krajevima obično ta granica u promjeni oborinskog režima u rasponu između 1 i 2 sata. Stoga je u slučajevima nemogućnosti osiguranja dobroga prilagođavanja nekog od odabranih funkcija proračunatim količinama oborine nužno provesti takvo izjednačenje za vremenske intervale kraćih i duljih trajanja, te iz rezultirajućih funkcija izjednačenja odrediti presjecišno vrijeme tih krivulja. U tom je slučaju, ali i inače zbog bolje mogućnosti prilagodbe, primjerenije koristiti različite HTP (ITP) krivulje za različite povratne periode.

3.5 Generiranje projektnog pljuska na pilot područjima

Generiranje projektnog pljuska proizlazi iz potrebe za definiranjem sintetičke oborine vremenski promjenjivog intenziteta koja što točnije predstavlja realne oborine na pilot područjima. Naime, jednolična oborina direktno izvedena iz HTP ili ITP krivulja može znatno podcijeniti površinsko otjecanje u odnosu na realne oborine slične vjerojatnosti pojavljivanja, što je posebno izraženo za dulja trajanja i urbane slivove (Krvavica i Rubinić, 2021).

Metodologija generiranja projektnog pljuska na području RH predstavljena je u prethodnim studijama (Građevinski fakultet u Rijeci i DHMZ, 201.) i znanstvenim radovima (Krvavica i sur., 2018; Krvavica i Rubinić, 2021), a dodatno je razrađena i unaprjeđena u okviru predmetne studije.

Generiranje projektnog pljuska sastoji se od tri koraka:

- 1. Identifikacija i izdvajanje relevantnih pljuskova iz niza izmjerenih ombrografskih podataka.
- 2. Definiranje bezdimenzionalnog oblika projektnog pljuska za različita trajanja.
- 3. Generiranje projektnog pljuska za različita trajanja i vjerojatnosti pojavljivanja.

3.5.1 Identifikacija relevantnih pljuskova

Identifikacija i izdvajanje relevantnih pljuskova provedena je prema metodologiji definiranoj u dokumentu *Australian Rainfall and Runoff* (Ball i sur., 2019), a sastoji se od sljedećih koraka:

- 1. Identifikacija pljuska koji premašuje zadani prag iz niza zabilježenih oborina.
- 2. Definiranje cjelokupne oborine unutar kojeg se nalazi identificirani pljusak.
- 3. Izdvajanje pljuska za daljnju analizu ako se trajanje nalazi unutar odabranog raspona.

Identifikacija pljuskova se provodi na nizu ombrografskih podataka vremenske razlučivosti 5 min i preciznosti 0,1 mm sa postaja Poreč, Gospić, Zadar, Split-Marjan i Ploče. Ukupna duljina vremenskih nizova po ombrografskoj postaji prikazana je u tablici 3.1.1, a iznosi minimalno 30 godina.

Za početak je potrebno definirati standardna trajanja pljuskova te pripadajuće raspone cjelokupne oborine za koje se provodi identifikacija (prikazano u tablici 3.5.1). Za svako standardno trajanje pljuska, provodi se pretraga vremenskog niza zabilježenih oborina pri čemu se identificira svaka zabilježena količina oborina koja premašuje unaprijed definirani prag. Prag za identifikaciju relevantnih pljuskova definiran je količinom oborine koja odgovara povratnom periodu od 1 godine (Ball i sur., 2019). Primjerice, za standardno trajanje pljuska od 1 h pretražuju se vrijednosti gdje 12 uzastopnih izmjerenih vrijednosti (12 x 5 min = 60 min) kumulativno premašuje vrijednost koja se

proračuna iz HTP krivulje za trajanje 1 h i povratni period od 1 godine. Nakon što je cijeli niz pretražen za jedno standardno trajanje, pretraga se provodi ispočetka za sljedeće standardno trajanje pljuska.

Standardno tra	janje pljuska	Raspon trajanja cjelokupne oborine			
(min)	(h)	od (h)	do (h)		
60	1	0,5	1,5		
120	2	1,5	2,5		
180	3	2,5	3,75		
270	4,5	3,75	5,25		
360	6	5,25	7,5		
540	9	7,5	10,5		
720	12	10,5	15		
1080	18	15	21		
1440	24	21	>24		

Tablica 3.5.1. Standardna trajanja pljuskova i pripadajući raspon trajanja cjelokupne oborine korišteni u predmetnoj analizi

Nakon što je pojedini pljusak identificiran, potrebno je odrediti trajanje cjelokupne oborine, čiji se točan početak i kraj iterativno određuje prema dva kriterija (Ball i sur., 2019). Prvi kriterij je vezan uz kumulativnu količinu oborine u određenom razdoblju:

- Za standardno trajanje pljuska kraće od 6 h, početak/kraj oborine definiran je kao razdoblje od 6 sati unutar kojeg je zabilježeno manje od 1 mm oborine.
- Za standardno trajanje pljuska između 6 i 12 h, početak/kraj oborine definiran je kao razdoblje od 12 sati unutar kojeg je zabilježeno manje od 2 mm oborine.
- Za standardno trajanje pljuska između 12 i 18 h, početak/kraj oborine definiran je kao razdoblje od 18 sati unutar kojeg je zabilježeno manje od 3 mm oborine.
- Za standardno trajanje pljuska dulje od 18 h, početak/kraj oborine definiran je kao razdoblje od 24 sati unutar kojeg je zabilježeno manje od 4 mm oborine.

Drugi kriterij je period od jednog sata unutar kojeg je palo manje od 0,1 mm oborine.

Slika 3.5.1. Dijagram toka kojim je opisana metodologija identifikacije i izdvajanja pljuskova relevantnih za daljnje analize (modificirano prema Ball i sur., 2019)

Ako se trajanje cjelokupne oborine nalazi unutar raspona definiranog u tablici 3.5.1 za odabrano standardno trajanje, pljusak se izdvaja za daljnju analizu, u suprotnom se odbacuje te se nastavlja potraga. Jednom kada pretraga dođe do kraja vremenskog niza, odabire se sljedeće standardno trajanje i započinje postupak od početka vremenskog niza.

Izdvojeni pljuskovi se dodatno kategoriziraju kao česti ili rijetki događaja, pri čemu je granica koja dijeli te dvije kategorije definirana povratnim periodom od 10 godina (vjerojatnost godišnjeg premašenja 10%).

3.5.2 Definiranje bezdimenzionalnog oblika projektnog pljuska

Definiranje bezdimenzionalnog oblika projektnog pljuska provedeno je prema metodi uprosječene varijabilnosti oborine (Pilgrim, 1987). Navedena metoda je detaljnije obrazložena u prethodnoj studiji (Građevinski fakultet u Rijeci i DHMZ, 2019) te znanstvenim radovima (Krvavica i sur., 2018; Krvavica i Rubinić, 2021).

Metoda uprosječene varijabilnosti sastoji se od statističke analize pljuskova izdvojenih u prethodnom koraku. Za svako trajanje pljuska generiraju se pluviogrami jednakog trajanja i vremenskog inkrementa. Pritom, odabrani inkrement je manji za kraća trajanja, a veći za dulja trajanja kako bi se očuvala realna varijabilnost intenziteta (Ball i sur., 2019.). Primjerice za trajanje od 1 h, inkrement iznosi 5 min, što znači da se pljusak sastoji od 12 inkremenata različitih količina oborine trajanja 5 min, dok za trajanje od 12 sati, inkrement iznosi 30 min te se pljusak sastoji od 24 inkrementa različitih količina oborine trajanja 30 min. Odabrani inkrementi prikazani su u tablici 3.5.2.

Trajanje pljuska (h)	1	2	3	4.5	6	9	12	18	24
Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Vremenski inkrement (min)	5	10	10	15	20	30	30	45	60
Broj inkremenata (-)	12	12	18	18	18	18	24	24	24

Tablica 3.5.2. Odabrani vremenski inkrementi za različita trajanja pljuska (prema Ball i sur., 2019.)

Prema navedenoj metodi, za svaki se pljusak količina oborine izražava kao postotak ukupne količine oborine te rangira po inkrementima. Potom se za svaki rangirani inkrement određuje prosječna

postotna vrijednost s obzirom na sve analizirane pljuskove tog trajanja. Konačan rezultat je bezdimenzionalni oblik projektnog pljuska izražen kao postotak oborine u svakom inkrementu, ali koji odražava vremensku raspodjelu povijesnih oborina na odabranoj lokaciji.

Na slici 3.5.3. dan je primjer proračuna bezdimenzionalnog oblika projektnog pljuska prema metodi uprosječene varijabilnosti oborine za 10 hipotetskih oborina istog trajanja koje su podijeljene u tri vremenska inkrementa. U svakom inkrementu se određuje postotna vrijednost količine oborine. Potom se za svakom inkrementu dodjeljuje odgovarajući razred s obzirom na količinu oborine (u danom primjeru; razred 1 za najveću količinu oborine, a razred 3 za najmanju količinu oborine). Ako su količine oborine jednake u dva razred, dodjeljuje se prosječni razred. Zatim se za svaki razred određuje pripadajuća postotna količina oborine. Nakon što se svaka pojedinačna oborina obradi na prethodno opisani način, određuje se prosjek razreda za svaki inkrement i prosjek postotne količine oborine za svaki razred. Konačno se definiraju postotne količine oborine u svakom inkrementu prema određenom razredu, čime je definiran i bezdimenzionalni oblik projektnog pljuska.

Datum Ukupna boličina oborine		Količir svakom	Količina oborine u svakom inkrementu (mm)			otna kol ine u sva rementu	ičina ikom i (-)	Razred svakog inkrementa			Postotak količine oborine u svakom razredu		
	(mm)	P1	P2	Р3	P1	P2	P3	P1	P2	Р3	R1	R2	R3
kiša1	57	19	19	19	0.33	0.33	0.33	2	2	2	0.33	0.33	0.33
kiša2	56	16	26	14	0.29	0.46	0.25	2	1	3	0.46	0.29	0.25
kiša3	54	17	17	20	0.31	0.31	0.37	2.5	2.5	1	0.37	0.31	0.31
kiša4	53	20	18	15	0.38	0.34	0.28	1	2	3	0.38	0.34	0.28
kiša5	52	15	19	18	0.29	0.37	0.35	3	1	2	0.37	0.35	0.29
kiša6	49	14	19	16	0.29	0.39	0.33	3	1	2	0.39	0.33	0.29
kiša7	47	15.7	15.7	15.7	0.33	0.33	0.33	2	2	2	0.33	0.33	0.33
kiša8	47	16	13	18	0.34	0.28	0.38	2	3	1	0.38	0.34	0.28
kiša9	46	16.5	15.5	14	0.36	0.34	0.30	1	2	3	0.36	0.34	0.30
kiša10	44	19	18	7	0.43	0.41	0.16	1	2	3	0.43	0.41	0.16
Prosjek					1.95	1.85	2.2	0.38	0.34	0.28			
Konačni razred inkrementa					R2	R1	R3						
Konačna postotna količina oborine u inkrementu						0.34	0.38	0.28					

Tablica 3.5.3. Primjer generiranja bezdimenzionalnog oblika projektnog pljuska (modificirano prema Cordery i sur., 1984)

Bezdimenzionalni oblici projektnog pljuska se posebno definiraju za pljuskove koji su kategorizirani kao rijetki i kao česti događaji, stoga se za svaku ombrografsku postaju definira ukupno 18 oblika pljuskova (9 standardnih trajanja x 2 vjerojatnosti).

3.5.3 Generiranje projektnog pljuska

Nakon što su bezdimenzionalni oblici projektnog pljuska definirani za svako trajanje i dvije različite kategorije (česti i rijetki događaji), provodi se pridruživanje apsolutnih vrijednosti količine oborina iz HTP krivulja za tri vjerojatnosti pojavljivanja (povratni period od 5, 25 i 100 godina). Pritom se pri određivanju projektnog pljuska povratnog perioda 5 godina koriste bezdimenzionalni oblici iz kategorije česti događaji, dok se pri određivanju projektnog pljuska povratnog perioda 25 i 100 godina koriste bezdimenzionalni oblici iz kategorije rijetki događaji. Za trajanja u kojima nisu zabilježeni rijetki događaji, za sve povratne periode se koriste oblici pljuska iz kategorije čestih događaja.

Primjerice za određivanje projektnog pljuska povratnog perioda 25 godina i trajanja 3 sata, prvo se proračuna količina oborine iz HTP krivulje istog trajanja i povratnog perioda. Potom se dobivena vrijednost pomnoži sa postocima svakog inkrementa kako je definirano oblikom bezdimenzionalnog pljuska, a rezultat je konačni projektni pljusak trajanja 3 sata, koji se sastoji od 18 inkrementa trajanja 10 minuta, pri čemu svaki inkrement ima različit intenzitet oborine.

4 Rezultati analize kratkotrajnih jakih količina oborina na pilot područjima

4.1 Prihvatljivost ombrografskih podataka

Provedenom usporedbom maksimalnih dnevnih količina oborine prema ombrografu i prema pripadnom kišomjeru detektirane su potencijalno nepouzdane godine ombrografskih mjerenja za procjene očekivanih ekstrema. U tablici 4.1.1 nalaze se rezultati za pojedina pilot područja. Navedene su nepouzdane godine koje su izuzete iz daljnje analize, a zvjezdicom su označene one godine koje su procijenjene kao granično suspektne. U zadnjoj koloni naveden je broj godina nakon isključivanja nepouzdanih godina.

Tablica 4.1.1. Popis ombrografskih postaja analiziranih u ovoj studiji za pojedina pilot područja, s raspoloživim dugogodišnjim razdobljem mjerenja prema ombrografu i popis nepouzdanih godina ombrografskih mjerenja za analizu ekstrema nakon usporedbe s podacima pripadnih kišomjera. Godine označene sa zvjezdicom označavaju granično suspektne godine. U stupcu nGod navedena je duljina raspoloživog niza nakon izuzimanja nepouzdanih godina za analizu ekstrema.

Pilot	Postaja	Razdoblje	Nepouzdano i suspektno	nGod
Poreč	Poreč	19842020.	1986., 1992., 1993.	34
Gospić	Gospić	19612020.	1961., 1963.*, 1971.,1979.*,1980., 1982.*,1983.*, 1985.*,1987.*, 1998.	56
Zadar, Biograd na Moru	Zadar	19612020.	1965.,1985.,1989.,1990., 1991.	55
Split	Split - Marjan	19612020.	1961.*, 1963.*, 1964.*, 1974., 1978., 1990.,1993., 1994.*	56
Metković	Ploče	19682020.	1968., 1981.*	52

Na slikama od 4.1.1 do 4.1.5 prikazani su nizovi Rd_kis_{maks} i Rd_omb_{maks} za sve analizirane postaje te rezultati ispitivanja *i*) dostupnosti mjerenja tijekom godine (tekst iznad grafa; broj mjeseci tijekom godine od 1 do 12) te *ii*) slaganja mjeseca dostizanja godišnjeg maksimuma (tekst ispod grafa; mjeseci tijekom godine od 1 do 12). Brojevi ispod krivulja označavaju vrijednosti dnevnog maksimuma (Rdmaks) (označen istom bojom kao i pripadni izvor), zatim mjeseci (Mjesec) u kojem su maksimumi izmjereni prema kišomjeru i ombrografu te pripadni datum prema kišomjeru ($Datum_kis$). Crnom bojom su označeni oni slučajevi u kojima se mjeseci pojavljivanja maksimuma iz dva izvora ne podudaraju. Za te slučajeve je dodatno navedena vrijednost izmjerenog dnevnog

maksimuma prema ombrografu na datum izmjerenog maksimuma prema kišomjeru (*Rd_omb(Datum_kis)maks*) te datum izmjerenog maksimuma prema ombrografu (*Datum_omb*) i na taj datum vrijednost izmjerenog maksimuma prema kišomjeru (*Rd_kiš(Datum_omb)maks*). Poništeni podaci ombrografa na *Datum_kiš* označeni su s *PON*. Brojevi iznad krivulja označavaju za koliko je mjeseci (*nMjesec*) unutar godine dostupna informacija o mjesečnom maksimumu dnevnih količina oborine te je navedena razlika opaženih maksimuma ako je veća od 20% (*raz* > 20%).

Slike 4.1.6 do 4.1.10 pružaju uvid u učestalost pojavljivanja godišnjih maksimuma po mjesecima za svaku postaju koje su također korištene pri konačnom odabiru (ne)pouzdanih godina. Rezultati pokazuju da na postajama Poreč i Zadar treba iz analize ekstrema ukloniti tri odnosno pet nepouzdanih godina u kojima sa sigurnošću možemo tvrditi da za sva trajanja nije detektiran godišnji maksimum oborine. Na postajama Gospić i Split-Marjan je utvrđeno po četiri takve godine, a na postaji Ploče je jedna godina nepouzdana. Najviše granično suspektnih godina ocijenjeno je na postaji Gospić (6) te Split-Marjan (4) dok je na postaji Ploče jedna godina granično suspektna. Naime, za te godine vrijednosti maksimalnih količina oborine za samo pojedina (vrlo kratka ili najdulja) trajanja pripadaju među deset najmanjih vrijednosti u nizu, a za ostala su visoko rangirana. Na te godine će se obratiti više pažnje prilikom procjene ekstrema te će biti uklonjene iz analize ovisno o tome koliko će utjecati na statistička svojstva razdiobe ekstrema.

Slika 4.1.1.Usporedba vremenskih nizova maksimalne dnevne količine oborine prema kišomjeru (crvena krivulja) i ombrografu (plava krivulja) za raspoloživo zajedničko razdoblje mjerenja na postaji Poreč (1984.-2020.).

Slika 4.1.2.Usporedba vremenskih nizova maksimalne dnevne količine oborine prema kišomjeru (crvena krivulja) i ombrografu (plava krivulja) za raspoloživo zajedničko razdoblje mjerenja na postaji Gospić (1961.-2020.).

Slika 4.1.3.Usporedba vremenskih nizova maksimalne dnevne količine oborine prema kišomjeru (crvena krivulja) i ombrografu (plava krivulja) za raspoloživo zajedničko razdoblje mjerenja na postaji Zadar (1961.-2020.).

Slika 4.1.4.Usporedba vremenskih nizova maksimalne dnevne količine oborine prema kišomjeru (crvena krivulja) i ombrografu (plava krivulja) za raspoloživo zajedničko razdoblje mjerenja na postaji Split-Marjan (1961.-2020.).

Slika 4.1.5.Usporedba vremenskih nizova maksimalne dnevne količine oborine prema kišomjeru (crvena krivulja) i ombrografu (plava krivulja) za raspoloživo zajedničko razdoblje mjerenja na postaji Ploče (1968.-2020.).

Slika 4.1.6. Usporedba učestalosti pojavljivanja godišnje maksimalne dnevne količine oborine po mjesecima za postaju Poreč, razdoblje 1984. – 2020.

Slika 4.1.7.Usporedba učestalosti pojavljivanja godišnje maksimalne dnevne količine oborine po mjesecima za postaju Gospić, razdoblje 1961. – 2020.

Slika 4.1.8.Usporedba učestalosti pojavljivanja godišnje maksimalne dnevne količine oborine po mjesecima za postaju Zadar, razdoblje 1961. – 2020.

Slika 4.1.9. Usporedba učestalosti pojavljivanja godišnje maksimalne dnevne količine oborine po mjesecima za postaju Split-Marjan, razdoblje 1961. – 2020.

Slika 4.1.10. Usporedba učestalosti pojavljivanja godišnje maksimalne dnevne količine oborine po mjesecima za postaju Ploče, razdoblje 1968. – 2020.

4.2 Analiza nizova godišnjih maksimalnih količina oborine

U ovom poglavlju analizirane su osnovne statističke veličine pojedinih nizova trajanja od 10 do 60 minuta, za 2, 4, 6, 12, 18 i 24 sata te trajanja od 1 do 5 uzastopnih dana.

U tablicama 4.2.1. do 4.2.5. navedeni su srednjak, standardna devijacija i koeficijent varijacije pojedinog niza maksimalnih godišnjih količina oborine, zatim najveće izmjerene količine oborine za pojedino trajanje te pripadno povratno razdoblje procijenjeno pomoću razdiobe GEV na pet postaja na pilot područjima projekta STREAM. Iz vrijednosti standardnih devijacija i koeficijenata varijacije vidi se promjenjivost godišnjih maksimuma od godine do godine.

Na postaji Poreč je promjenjivost oborine za sva trajanja podjednaka i kreće se u rasponu od 29 % do 35 %. Na postaji Gospić se koeficijent varijacije kreće između 26 % i 29 % za dnevne i višednevne količine oborine, a za kraća trajanja, do 24 sata, promjenjivost se kreće od 32 % do 37 %. Slično je i na postaji Ploče na kojoj najmanju promjenjivost imaju višednevne količine oborine (od 25 % do 27 %) dok se za kraća trajanja promjenjivost izmjenjuje u rasponu od 31 % do 39 %. Nešto promjenjivije vrijednosti opažane su na postaji Split-Marjan, gdje se promjenjivost oborine minutnih kao i dnevnih

Sveučilište

u Rijeci Građevinsk

Fakultet

G

te višednevnih trajanja kreće u rasponu od 30 % do 39 % dok se za trajanja od 2 do 24 sata koeficijent varijacije kreće u rasponu od 40 % do 45 %. U Zadru je promjenjivost oborine od godine do godine znatno veća nego na ostalim postajama. Za trajanja od 10 do 60 minuta koeficijent varijacije kreće se u rasponu od 37 % do 41 %, zatim se povećava za višednevne količine oborine (od 47 % do 56 %), a najveću međugodišnju promjenjivost na postaji Zadar pokazuju satne (2, 4, 6, 12, 18 i 24 h) količine oborine (od 61 % do 69 %).

Izmjerene maksimalne količine oborine su na svim postajama za većinu trajanja dva puta veće od pripadne srednje vrijednosti. Na postaji Gospić je zabilježeni 2-satni maksimum (iz 1969. godine) bio tri puta veći od pripadnog srednjaka. I na postaji Split-Marjan je zabilježeni 4- i 6- satni maksimum bio tri puta veći od prosjeka kao i na postaji Zadar za 2-satno te 4- i 5- dnevno trajanje oborine (iz 1986. godine). Na postaji Zadar je maksimalna zabilježena količina oborine za trajanja od 4 sata do 3 dana bila čak četiri puta veća od pripadnih srednjih vrijednosti u analiziranom razdoblju.

Pripadna povratna razdoblja takvih događaja, određena prema razdiobi GEV, pokazuju da trostruko veće vrijednosti od srednjaka predstavljaju vrlo rijetke događaje koji se mogu očekivati prosječno jednom u više od 50 godina na postaji Split-Marjan odnosno više od 100 godina na postajama Gospić i Zadar. Na potonjoj postaji, godišnji ekstremi zabilježeni 1986. godine za većinu trajanja mogu se očekivati s povratnim razdobljem preko 200 godina.

U tablicama 4.2.1. do 4.2.5. su dane i vrijednosti trenda (Senov nagib) na 10 godina izraženog u postocima u odnosu na srednjak iz klimatološkog razdoblja 1981. – 2010. Vrijednosti statistički značajnog trenda su podebljane. Rezultati trenda pokazuju različit signal promjena na pojedinoj postaji i za različita trajanja oborine. Tako je na postaji Poreč uočen pozitivan trend maksimalne godišnje količine oborine za sva trajanja osim 30-minutnog za koji je trend negativnog predznaka. Na postajama Gospić i Ploče je raspodjela trenda po trajanjima slična – trend je negativan za najkraća trajanja (do 60 minuta) dok za sva dulja trajanja prevladava pozitivan trend. U Zadru pak prevladava negativan trend količine oborine za sva trajanja dok je na postaji Split-Marjan uočen negativan trend za trajanja oborine do 40 minuta, a za trajanja dulja od 50 minuta trend je pozitivan. Međutim, vrijednosti trenda su relativno male i kreću se u rasponu od – 8 % / 10 god do 5 % / 10 god. Statistički značajan pozitivan trend uočen je samo na postaji Ploče za trajanja od 12, 18 i 24 sata, a negativan na postaji Zadar za 10-minutne godišnje maksimume. Trend dnevnih i višednevnih maksimalnih količina oborine nije značajan niti na jednoj postaji. Treba napomenuti kako je trend na postaji Ploče analiziran za razdoblje 1969. – 2020. za koji je niz godišnjih maksimuma potpun dok

(tablica 3.1.1) koji doprinosi nepouzdanosti procjena trenda godišnjih maksimuma za trajanja do 24 sata. Na slikama 4.2.1 do 4.2.5 prikazani su vremenski nizovi dnevnih i višednevnih količina oborine i pripadni pravci trenda na pojedinoj postaji.

Tablica 4.2.1. Osnovna statistika nizova godišnjih maksimalnih količina oborine (R_{sred} – srednjak, σ standardna devijacija, c_v – koeficijent varijacije), najveća registrirana količina oborine (R_{maks}) i pripadno povratno razdoblje (T) procijenjeno pomoću opće razdiobe ekstrema te dekadni trend za različita trajanja (10 do 60 minuta, 2, 4, 6, 12 i 24 sata te 1 do 5 dana) za postaju **Poreč** prema raspoloživom razdoblju iz tablice 3.1.1. Vrijednosti statistički značajnog trenda su podebljane.

Trajanje	R _{sred} (mm)	σ (mm)	Cv	R _{maks} (mm)	T (god)	Trend (mm/10god)
10 min	13.5	4.6	0.34	24.2	18	0.99
20 min	21.3	7.3	0.34	38.8	24	0.00
30 min	26.1	8.7	0.33	50.4	35	-0.78
40 min	29.3	9.2	0.31	56.2	27	0.12
50 min	32	10.1	0.32	63.3	46	0.57
60 min	34.1	11.2	0.33	70.0	61	3.78
2 h	40.9	13.9	0.34	88.7	57	3.99
4 h	47.8	16.4	0.34	106.4	107	1.10
6 h	51.5	17.2	0.33	112.1	119	2.30
12 h	59.4	17.9	0.3	112.4	73	3.44
18 h	64.3	19.9	0.31	120.2	89	4.97
24 h	69.9	22.4	0.32	120.2	28	4.97
1 d	61.6	21.5	0.35	125.5	66	6.78
2 d	79.6	23.7	0.30	138.2	71	4.71
3 d	89.3	28.3	0.32	158.2	41	4.20
4 d	96.3	28.4	0.29	172.3	55	2.68
5 d	102.7	30	0.29	175.4	58	1.74

Tablica 4.2.2. Osnovna statistika nizova godišnjih maksimalnih količina oborine (R_{sred} – srednjak, σ - standardna devijacija, c_v – koeficijent varijacije), najveća registrirana količina oborine (R_{maks}) i pripadno povratno razdoblje (T) procijenjeno pomoću opće razdiobe ekstrema te dekadni trend za različita trajanja (10 do 60 minuta, 2, 4, 6, 12 i 24 sata te 1 do 5 dana) za postaju **Gospić** prema raspoloživom razdoblju iz tablice 3.1.1. Vrijednosti statistički značajnog trenda su podebljane.

Trajanje	R _{sred} (mm)	σ (mm)	Cv	R _{maks} (mm)	T (god)	Trend (mm/10god)
10 min	11.8	4.1	0.35	21.9	80	-4.76
20 min	18.5	6.4	0.35	37.8	98	-5.00
30 min	22.8	8.3	0.36	47.6	74	-5.35
40 min	26	9.7	0.37	59.9	116	-3.62
50 min	28.1	10.4	0.37	64.7	117	-2.26
60 min	29.6	10.7	0.36	67.1	119	-1.73
2 h	36.3	12.7	0.35	91.3	317	2.31
4 h	45.9	15.5	0.34	110.2	159	4.47
6 h	52.4	17	0.32	110.8	61	3.38
12 h	64.6	21.2	0.33	122.7	49	3.09
18 h	73.8	24.4	0.33	151.9	75	2.92
24 h	79.9	27.7	0.35	159.1	44	3.02
1 d	75.6	22.2	0.29	141.0	78	0.13
2 d	100.3	27.9	0.28	186.2	68	-0.17
3 d	118.6	31.8	0.27	236.5	194	1.36
4 d	131.7	34.8	0.26	262.3	231	1.40
5 d	146.5	38.9	0.27	267.9	116	0.55

Tablica 4.2.3. Osnovna statistika nizova godišnjih maksimalnih količina oborine (R_{sred} – srednjak, σ standardna devijacija, c_v – koeficijent varijacije), najveća registrirana količina oborine (R_{maks}) i pripadno povratno razdoblje (T) procijenjeno pomoću opće razdiobe ekstrema te dekadni trend za različita trajanja (10 do 60 minuta, 2, 4, 6, 12 i 24 sata te 1 do 5 dana) za postaju **Zadar** prema raspoloživom razdoblju iz tablice 3.1.1. Vrijednosti statistički značajnog trenda su podebljane.

Trajanje	R _{sred} (mm)	σ (mm)	Cv	R _{maks} (mm)	T (god)	Trend (mm/10go
10 min	15.5	6.1	0.39	33.2	39	-7.71
20 min	24.2	8.9	0.37	49.3	48	-5.95
30 min	30.4	11.4	0.38	61.8	54	-4.94
40 min	35.2	13.6	0.39	68.3	41	-5.43
50 min	38.9	15.4	0.4	73.3	33	-5.52
60 min	41.8	17.1	0.41	88.3	62	-5.96
2 h	51.1	25.1	0.49	147.3	132	-4.31
4 h	61.7	39	0.63	247.4	275	-1.6
6 h	68.8	47.4	0.69	304.1	284	-0.82
12 h	75.6	50.9	0.67	334.6	178	-0.95
18 h	79.3	50	0.63	335.6	233	-0.87
24 h	83.3	51	0.61	336.3	204	-0.87
1 d	78.7	48.2	0.61	352.2	360	-1.07
2 d	93.3	52.2	0.56	353.7	236	-2.09
3 d	100.1	52.0	0.52	353.7	275	-0.89
4 d	106.9	51.8	0.48	353.7	275	-1.99
5 d	115.1	54.0	0.47	353.7	204	-2.13

Tablica 4.2.4. Osnovna statistika nizova godišnjih maksimalnih količina oborine (R_{sred} – srednjak, σ standardna devijacija, c_v – koeficijent varijacije), najveća registrirana količina oborine (R_{maks}) i pripadno povratno razdoblje (T) procijenjeno pomoću opće razdiobe ekstrema te dekadni trend za različita trajanja (10 do 60 minuta, 2, 4, 6, 12 i 24 sata te 1 do 5 dana) za postaju **Split-Marjan** prema raspoloživom razdoblju iz tablice 3.1.1. Vrijednosti statistički značajnog trenda su podebljane.

Trajanje	R _{sred} (mm)	σ (mm)	Cv	R _{maks} (mm)	T (god)	Trend (mm/10go
10 min	11.4	4.4	0.39	25.6	87	-1.27
20 min	17.9	6.1	0.34	38.2	237	-1.04
30 min	22.4	7.3	0.33	43.4	176	-1.12
40 min	25.6	8.4	0.33	46.5	97	-0.40
50 min	27.7	9.5	0.34	50.6	67	0.00
60 min	29.4	10.5	0.36	56.6	74	0.42
2 h	36.4	15.2	0.42	81	43	3.83
4 h	43.4	19.7	0.45	110.4	58	4.09
6 h	47.1	21	0.45	120.9	53	4.07
12 h	54.8	21.9	0.4	126.8	38	3.38
18 h	60.8	22.2	0.37	137.1	53	3.26
24 h	64.8	23.1	0.36	149.2	96	3.63
1 d	61.6	23.0	0.37	149.6	131	4.35
2 d	76.7	25.8	0.34	168.2	93	3.13
3 d	83.4	26.6	0.32	168.8	82	2.46
4 d	89.8	27.4	0.31	186.6	132	1.76
5 d	94.5	28.4	0.30	205.2	225	1.33

Tablica 4.2.5. Osnovna statistika nizova godišnjih maksimalnih količina oborine (R_{sred} – srednjak, σ standardna devijacija, c_v – koeficijent varijacije), najveća registrirana količina oborine (R_{maks}) i pripadno povratno razdoblje (T) procijenjeno pomoću opće razdiobe ekstrema te dekadni trend za različita trajanja (10 do 60 minuta, 2, 4, 6, 12 i 24 sata te 1 do 5 dana) za postaju **Ploče** prema raspoloživom razdoblju iz tablice 3.1.1. Vrijednosti statistički značajnog trenda su podebljane.

Trajanje	R _{sred} (mm)	σ (mm)	Cv	R _{maks} (mm)	T (god)	Trend (mm/10go
10 min	15.3	4.9	0.32	33.6	291	-5.93
20 min	24.2	7.6	0.31	49.3	279	-4.19
30 min	30.1	10.4	0.35	65.4	186	-3.25
40 min	34.4	12.8	0.37	75.8	138	-2.69
50 min	37.9	14.7	0.39	81.5	89	-1.87
60 min	40.7	15.6	0.38	84.6	80	-0.99
2 h	49.8	17.7	0.36	101.0	60	2.5
4 h	59.3	22.3	0.38	144.4	108	3.87
6 h	65.5	22.9	0.35	156	192	3.06
12 h	75.9	24.3	0.32	156.6	111	4.76
18 h	82.3	26.3	0.32	174.0	119	4.97
24 h	88.5	29.5	0.33	187.4	104	5.23
1 d	84.6	29.0	0.34	161.5	58	-1.38
2 d	105.5	28.8	0.27	190.7	136	0.00
3 d	118.9	30.5	0.26	213.2	195	0.75
4 d	131.8	32.7	0.25	226.8	115	0.47
5 d	141.8	37.2	0.26	229.2	51	0.67

Slika 4.2.1. Vremenski nizovi godišnjih maksimalnih dnevnih (Rx1d) i višednevnih (Rx2d, Rx3d, Rx4d i Rx5d) količina oborine i pripadni pravci trenda za postaju **Poreč** iz razdoblja 1981. – 2020. Naznačene su vrijednosti trenda (u % / 10 god) i pripadne srednje vrijednosti iz klimatološkog razdoblja 1981. – 2010.

Slika 4.2.2. Vremenski nizovi godišnjih maksimalnih dnevnih (Rx1d) i višednevnih (Rx2d, Rx3d, Rx4d i Rx5d) količina oborine i pripadni pravci trenda za postaju **Gospić** iz razdoblja 1961. – 2020. Naznačene su vrijednosti trenda (u % / 10 god) i pripadne srednje vrijednosti iz klimatološkog razdoblja 1981. – 2010.

Slika 4.2.3. Vremenski nizovi godišnjih maksimalnih dnevnih (Rx1d) i višednevnih (Rx2d, Rx3d, Rx4d i Rx5d) količina oborine i pripadni pravci trenda za postaju **Zadar** iz razdoblja 1961. – 2020. Naznačene su vrijednosti trenda (u % / 10 god) i pripadne srednje vrijednosti iz klimatološkog razdoblja 1981. – 2010.

Slika 4.2.4. Vremenski nizovi godišnjih maksimalnih dnevnih (Rx1d) i višednevnih (Rx2d, Rx3d, Rx4d i Rx5d) količina oborine i pripadni pravci trenda za postaju **Split-Marjan** iz razdoblja 1961. – 2020. Naznačene su vrijednosti trenda (u % / 10 god) i pripadne srednje vrijednosti iz klimatološkog razdoblja 1981. – 2010.

Slika 4.2.5. Vremenski nizovi godišnjih maksimalnih dnevnih (Rx1d) i višednevnih (Rx2d, Rx3d, Rx4d i Rx5d) količina oborine i pripadni pravci trenda za postaju **Ploče** iz razdoblja 1978. – 2020. Naznačene su vrijednosti trenda (u % / 10 god) i pripadne srednje vrijednosti iz klimatološkog razdoblja 1981. – 2010.

4.3 Vjerojatnosti pojave maksimalnih količina oborina

Na slikama 4.3.1 do 4.3.5 prikazane su procijenjene godišnje maksimalne količine oborine za povratna razdoblja 5, 10, 25, 50 i 100 godina za sva trajanja od 10 minuta do 24 sata te za dnevne i višednevne količine oborine na pet analiziranih postaja. Za svaku procjenu dani su i pripadni intervali pouzdanosti (IP) na razini značajnosti 95 %. Tablične vrijednosti vjerojatnosti pojave maksimalnih količina oborina dane su u Prilogu B ovog dokumenta. Iz slika se može vidjeti kako se krivulje, očekivano, pomiču prema višim vrijednostima s povećanjem trajanja oborine. Ipak, za pojedine postaje i trajanja oborine, krivulje povratnih vrijednosti se presijecaju što je posljedica pojavljivanja jednakih vrijednosti godišnjih maksimuma za pojedina uzastopna trajanja u istoj godini. Na primjer, na postaji Zadar se krivulje povratnih vrijednosti za 12- i 18-satna trajanja presijecaju za povratna razdoblja dulja od 10 godina (Slika 4.3.3) što je rezultat odnosa pripadnih nizova maksimuma. Naime, u osam godina su pripadne vrijednosti godišnjih maksimuma 12- i 18-satnih trajanja jednake. Zbog takvih slučajeva je posebno važno za daljnju primjenu procijenjenih vrijednosti uzeti u obzir i vrijednosti donjeg i gornjeg intervala pouzdanosti.

Slika 4.3.1. Procjene maksimalnih godišnjih količina oborina (Rx) za povratna razdoblja do 2 do 100 godina (krivulje) i odgovarajući donji i gornji 95 %-tni intervali pouzdanosti (trokutići) za različita trajanja izračunate pooću opće razdiobe ekstremnih vrijednosti. **Poreč**, razdoblje 1984. – 2020.

Slika 4.3.2. Procjene maksimalnih godišnjih količina oborina (Rx) za povratna razdoblja do 2 do 100 godina (krivulje) i odgovarajući donji i gornji 95 %-tni intervali pouzdanosti (trokutići) za različita trajanja izračunate pooću opće razdiobe ekstremnih vrijednosti. **Gospić**, razdoblje 1962. – 2020.

Slika 4.3.3. Procjene maksimalnih godišnjih količina oborina (Rx) za povratna razdoblja do 2 do 100 godina (krivulje) i odgovarajući donji i gornji 95 %-tni intervali pouzdanosti (trokutići) za različita trajanja izračunate pooću opće razdiobe ekstremnih vrijednosti. Zadar, razdoblje 1961. – 2020.

Slika 4.3.5. Procjene maksimalnih godišnjih količina oborina (Rx) za povratna razdoblja do 2 do 100 godina (krivulje) i odgovarajući donji i gornji 95 %-tni intervali pouzdanosti (trokutići) za različita trajanja izračunate pooću opće razdiobe ekstremnih vrijednosti. **Ploče**, razdoblje 1969. – 2020.

4.4 HTP i ITP krivulje

4.4.1 HTP krivulje kratkotrajnih oborina

Na temelju provedenih analiza u točkama 4.1.-4.3., a koristeći metodologiju sadržanu u točki 3.4, definirane su i HTP krivulje za analizirane odabrane ombrografske postaje priobalnog područja Hrvatske. Izjednačenje odabranih funkcija HTP krivulja na proračunate vrijednosti maksimalnih visina oborina određenog trajanja i povratnog perioda, s obzirom da nije bilo moguće sa zadovoljavajućom točnošću biti provedeno unutar cjelokupnog raspona trajanja 10 minuta - 24 sata, provedeno je vodeći računa o značajkama pojave intenzivnih oborina za dva karakteristična trajanja – do i nakon reda veličine 1-3 sata, odnosno vremenske intervale kraćih i duljih trajanja oborina, s određivanjem njihovog presjecišnog vremena t_p .

Analitički prikazi rezultirajućih HTP krivulja za odabrana pilot područja dani su u tablici 4.4.1 karakteristične vrijednosti odabranih trajanja i povratnih perioda u tablicama 4.4.2 – 4.4.6, a njihov grafički prikaz na slikama 4.4.1 do 4.4.5. Za napomenuti je da su u spomenutim tabličnim i grafičkim

prikazima karakterističnih vrijednosti sadržani i prikazi najvećih do sada zabilježenih vrijednosti, odnosno njihova anvelopa.

Kod postaja Poreč, Gospić i Split anvelopa maksimalnih zabilježenih vrijednosti ima karakter 50-100godišnjeg povratnog perioda, kod Ploča donekle slično ali s naglašenijim premašivanjem 100godišnjeg povratnog perioda za trajanja 240-360 minuta, odnosno 4-6 sati, dok su kod postaje Zadar zabilježeni ekstremi vrlo značajno premašuju 100-godišnji povratni period za sva trajanja dulja od 120 minuta/2 sata.

	HTP krivulja	tp	HTP krivulja					
Povratni period	(10 min < t < tp)	(sati)	(tp < t < 24 sata)					
	POREÒ	< -						
2-god	4,5962 ·t ^{0,46}	1,32	13,149 ·t ^{0,2195}					
5-god	7,8457 ·t ^{0,3854}	1,97	17,905 ·t ^{0,2125}					
10-god	9,8459 ·t ^{0,3733}	1,96	22,381 ·t ^{0,2011}					
25-god	10,811 ·t ^{0,4156}	1,10	26,705 ·t ^{0,1997}					
50-god	13,175 ·t ^{0,4077}	0,94	31,348 ·t ^{0,1925}					
100-god	15,976 ·t ^{0,4006}	0,87	38,949 ·t ^{0,1752}					
GOSPIĆ								
2-god	5,0253 ·t ^{0,4023}	1,57	7,517 ·t ^{0,3137}					
5-god	6,8338 ·t ^{0,3985}	1,30	9,8741 ·t ^{0,314}					
10-god	6,7452 ⋅t ^{0,4495}	0,84	11,292 ·t ^{0,3179}					
25-god	7,5661 ⋅t ^{0,4652}	1,33	16,285 ·t ^{0,29}					
50-god	8,0563 ·t ^{0,4788}	0,90	15,126 ·t ^{0,3207}					
100-god	8,4558 ⋅t ^{0,4935}	1,00	17,359 ·t ^{0,3177}					
	ZADAF	R						
2-god	6,5368 ·t ^{0,408}	1,95	20,072 ·t ^{0,1723}					
5-god	8,1642 ·t ^{0,4388}	2,22	32,255 ⋅t ^{0,1579}					

Tablica 4.4.1. Analitički prikaz HTP – krivulja za odabrane postaje na priobalnom području Hrvatske

10-god	7,657 ⋅t ^{0,5123}	1,45	30,521 ·t ^{0,2027}						
25-god	8,8261 ·t ^{0,5308}	1,45	33,432 ·t ^{0,2328}						
50-god	11,124 ·t ^{0,4999}	1,22	25,452 ·t ^{0,307}						
100-god	14,042 ·t ^{0,4654}	2,12	28,1 ·t ^{0,3223}						
SPLIT									
2-god	4,082 ·t ^{0,4616}	1,04	10,465 ·t ^{0,2336}						
5-god	5,3515 ·t ^{0,4681}	1,31	16,096 ·t ^{0,2158}						
10-god	6,0493 ·t ^{0,4761}	1,73	21,705 ·t ^{0,2009}						
25-god	7,4805 ⋅t ^{0,4591}	2,96	31,033 ·t ^{0,1844}						
50-god	8,963 ·t ^{0,4377}	4,78	40,018 ·t ^{0,1733}						
	PLOČE								
2-god	5,5415 ·t ^{0,4692}	1,28	15,494 ·t ^{0,2322}						
5-god	6,8084 ·t ^{0,4903}	1,29	22,128 ·t ^{0,2191}						
10-god	7,5291 ⋅t ^{0,5031}	1,34	27,142 ·t ^{0,211}						
25-god	8,3176 ·t ^{0,5185}	1,28	30,548 ·t ^{0,2188}						
50-god	8,8233 ·t ^{0,5295}	1,31	34,436 ·t ^{0,2177}						
100-god	9,2649 ·t ^{0,5402}	1,25	35,424 ·t ^{0,2294}						

Tusianis (min)	50%	20%	10%	4%	2%	1%	Zehilie ženi men
Trajanje (min)	PP 2 god	PP 5 god	PP 10 god	PP 25 god	PP 50 god	PP 100 god	Zabilježeni max
10	13,3	19,1	23,3	28,1	33,7	40,2	24,2
20	18,2	24,9	30,1	37,5	44,7	53,0	38,8
30	22,0	29,1	35,0	44,4	52,7	62,4	50,4
40	25,1	32,5	39,0	50,1	59,3	70,0	56,2
50	27,8	35,4	42,4	54,9	64,9	76,6	63,3
60	30,2	38,0	45,4	59,3	68,9	79 <i>,</i> 8	70,0
120	37,6	49,5	58 <i>,</i> 6	69 <i>,</i> 5	78,8	90,1	88,6
240	43,8	57,4	67,4	79,8	90,0	101,7	105,9
360	47,9	62,5	73,1	86,5	97,3	109,2	111,4
720	55,7	72,5	84,0	99,4	111,2	123,3	111,4
1080	60,9	79,0	91,2	107,7	120,3	132,4	119,1
1440	64,9	84,0	96,6	114,1	127,1	139,3	119,1

Tablica 4.4.2. Tablični prikaz HTP krivulja trajanja do 24 sata za postaju Poreč

Slika 4.4.1. Grafički prikaz HTP krivulja trajanja do 24 sata za postaju Poreč

Troionia (min)	50%	20%	10%	4%	2%	1%	7-6:1:- *:
Trajanje (min)	PP 2 god	PP 5 god	PP 10 god	PP 25 god	PP 50 god	PP 100 god	Zabiljezeni max
10	12,7	17,1	19,0	22,1	24,3	26,3	21,9
20	16,8	22,5	25,9	30,5	33,8	37,1	37,8
30	19,7	26,5	31,1	36,8	41,1	45,3	47,6
40	22,2	29,7	35,4	42,1	47,1	52,2	59,9
50	24,2	32,5	39,1	46,7	52,4	58 <i>,</i> 3	64,7
60	26,1	34,9	41,5	50,8	56,2	63,7	67,1
120	33,8	44,4	51,7	65,3	70,2	79,4	91,3
240	41,9	55,2	64,5	79,8	87,7	99,0	110,1
360	47,6	62,7	73,4	89,8	99,9	112,6	110,5
720	59,2	77,9	91,4	109,8	124,8	140,4	121,8
1080	67,2	88,5	104,0	123,4	142,1	159,7	150,0
1440	73,6	96,9	114,0	134,2	155,8	175,0	155,7

Tablica 4.4.3. Tablični prikaz HTP krivulja trajanja do 24 sata za postaju Gospić

Slika 4.4.2. Grafički prikaz HTP krivulja trajanja do 24 sata za postaju Gospić

Traionia (min)	50%	20%	10%	4%	2%	1%	7ahilia ženi menu
Trajanje (min)	PP 2 god	PP 5 god	PP 10 god	PP 25 god	PP 50 god	PP 100 god	Zabiljezeni max
10	16,7	22,4	24,9	30,0	35,2	41,0	33,2
20	22,2	30,4	35,5	43,3	49,7	56,6	49,3
30	26,2	36,3	43,7	53,7	60,9	68,4	61,8
40	29,4	41,2	50,7	62,5	70,3	78,2	68,3
50	32,3	45,4	56,8	70,4	78,6	86,7	73,3
60	34,7	49,2	62,4	77,6	86,1	94,4	88,3
120	45,8	66,7	80,5	101,9	110,7	130,3	147,3
240	51,6	76,6	92,7	119,8	136,9	164,4	247,3
360	55,3	81,7	100,6	131,6	155,1	187,3	303,9
720	62,4	91,2	115,8	154,6	191,8	234,2	333,1
1080	66,9	97,2	125,7	170,0	217,3	266,9	333,4
1440	70,3	101,7	133,3	181,7	237,3	292,9	333,4

Tablica 4.4.4. Tablični prikaz HTP krivulja trajanja do 24 sata za postaju Zadar

Slika 4.4.3. Grafički prikaz HTP krivulja trajanja do 24 sata za postaju Zadar

Tusianis (min)	50%	20%	10%	4%	2%	1%	Zehilieženi men
Trajanje (min)	PP 2 god	PP 5 god	PP 10 god	PP 25 god	PP 50 god	PP 100 god	Zabilježeni max
10	11,8	15,7	18,1	21,5	24,6	27,4	25,5
20	16,3	21,8	25,2	29,6	33,3	37,0	38,2
30	19,6	26,3	30,5	35,7	39,7	44,1	43,4
40	22,4	30,1	35,0	40,7	45,0	49,9	46,5
50	24,8	33,4	39,0	45,1	49,7	54,9	50,6
60	27,0	36,4	42,5	49,0	53,8	59,4	56,6
120	32,0	45,2	56 <i>,</i> 8	67,4	72,9	80,1	81,0
240	37,6	52,5	65,3	85,3	98,7	106,1	110,4
360	41,4	57,3	70,8	91,9	111,0	121,0	120,6
720	48,7	66,6	81,4	104,4	125,2	151,3	124,1
1080	53,5	72,7	88,3	112,5	134,3	172,4	131,1
1440	57,2	77,3	93,6	118,6	141,1	189,2	142,2

Tablica 4.4.5. Tablični prikaz HTP krivulja trajanja do 24 sata za postaju Split

Slika 4.4.4. Grafički prikaz HTP krivulja trajanja do 24 sata za postaju Split

Turinuis (min)	50%	20%	10%	4%	2%	1%	Zehilie ženi men
Trajanje (min)	PP 2 god	PP 5 god	PP 10 god	PP 25 god	PP 50 god	PP 100 god	Zabilježeni max
10	16,3	21,1	24,0	27,4	29,9	32,1	33,6
20	22,6	29,6	34,0	39,3	43,1	46,7	49,3
30	27,3	36,1	41,7	48,5	53,4	58,2	65,4
40	31,3	41,5	48,2	56,3	62,2	68,0	75,8
50	34,7	46,4	53,9	63,2	70,0	76,7	81,5
60	37,8	50,7	59,1	69,5	77,1	84,6	84,6
120	47,1	63,2	74,5	87,1	97,6	106,2	100,4
240	55,3	73,5	86,3	101,3	113,5	124,5	143,8
360	60,8	80,4	94,0	110,7	124,0	136,7	154,2
720	71,4	93 <i>,</i> 5	108,8	128,9	144,2	160,2	154,2
1080	78,4	102,2	118,5	140,8	157,5	175,9	171,8
1440	83,9	108,9	125,9	150,0	167,7	187,9	184,4

Tablica 4.4.6. Tablični prikaz HTP krivulja trajanja do 24 sata za postaju Ploče

Slika 4.4.5. Grafički prikaz HTP krivulja trajanja do 24 sata za postaju Ploče

4.4.2 HTP krivulje višednevnih oborina

Analizirane su i HTP krivulje višednevnih oborina (trajanja 1-5 dana), temeljene na kišomjernim podacima dnevnih očitanja maksimalnih godišnjih oborina istih trajanja. Na temelju proračunatih vjerojatnosti maksimalnih višednevnih oborina (poglavlje 4.3) provedeno je izjednačenje te su generirane jednadžbe HTP krivulja za trajanja 1-5 dana (tablica 4.4.7) te slike 4.4.6 – 4.4.10.

Povratni period	HTP krivulja	
POREČ		
2-god	5,2892 ·t ^{0,331}	
5-god	8,2632 ·t ^{0,3075}	
10-god	10,914 ·t ^{0,29}	
25-god	15,275 ·t ^{0,2666}	
50-god	19,425 ·t ^{0,2487}	
100-god	24,503 ·t ^{0,2305}	
GOSPIĆ		
2-god	3,4863 ·t ^{0,4154}	
5-god	5,034 ·t ^{0,3982}	
10-god	6,2118 ·t ^{0,388}	
25-god	7,8965 ·t ^{0,376}	
50-god	9,3028 ·t ^{0,3675}	
100-god	10,844 ·t ^{0,3593}	
ZADAR		
2-god	10,101 ·t ^{0,2599}	
5-god	18,561 ·t ^{0,2277}	
10-god	28,264 ·t ^{0,2024}	
25-god	48,819 ·t ^{0,1671}	
50-god	73,907 ·t ^{0,1389}	

Tablica 4.4.7. HTP krivulje višednevnih oborina po povratnim periodima

100-god	112,31 ·t ^{0,1096}	
SPLIT		
2-god	48,216 ·t ^{0,1527}	
5-god	36,452 ·t ^{0,1727}	
10-god	27,294 ·t ^{0,1931}	
25-god	18,179 ·t ^{0,2212}	
50-god	12,942 ·t ^{0,2442}	
100-god	7,3959 ·t ^{0,2813}	
PLOČE		
2-god	7,0784 ⋅t ^{0,3341}	
5-god	12,663 ·t ^{0,291}	
10-god	17,243 ·t ^{0,2678}	
25-god	24,121 ·t ^{0,242}	
50-god	30,075 ⋅t ^{0,2246}	
100-god	36,762 ⋅t ^{0,2084}	

Slika 4.4.7. HTP krivulje višednevnih oborina za postaju Gospić

Slika 4.4.8. HTP krivulje višednevnih oborina za postaju Zadar

4.4.3 ITP krivulje kratkotrajnih oborina

ITP krivulje definirane su iz rezultirajućih vrijednosti HTP krivulja trajanja 10 minuta do 2 sata, koristeći jedinstvenu krivulju. Njihov su oblik i jednadžbe prikazani u tablici 4.4.8, kao i na slikama 4.4.11 – 4.4.15.

Povratni period	ITP krivulja	
POREČ		
2-god	837,63 ·t ^{-0,57}	
5-god	1309,8 ·t ^{-0,615}	
10-god	1644,3 ·t ^{-0,627}	
25-god	2027,4 ·t ^{-0,63}	
50-god	2449 ·t ^{-0,634}	
100-god	3035,1 ·t ^{-0,65}	
GOSPIĆ		
2-god	851,06 ·t ^{-0,603}	
5-god	1178,1 ·t ^{-0,612}	
10-god	1257 ·t ^{-0,593}	
25-god	1353,1 ·t ^{-0,561}	
50-god	1464,7 ·t ^{-0,555}	
100-god	1582,9 ·t ^{-0,551}	
ZADAR		
2-god	1093,9 ·t ^{-0,593}	
5-god	1360,7 ·t ^{-0,561}	
10-god	1391,7 ·t ^{-0,52}	
25-god	1613 ·t ^{-0,502}	
50-god	1955,2 ·t ^{-0,52}	

Tablica 4.4.8. ITP krivulje po povratnim periodima

DUMZ
DHMZ

100-god	2340,3 ·t ^{-0,535}	
SPLIT		
2-god	777,17 ·t ^{-0,59}	
5-god	977,76 ·t ^{-0,567}	
10-god	1033,6 ·t ^{-0,532}	
25-god	1246,7 ·t ^{0,541}	
50-god	1493,8 ·t ^{-0,562}	
100-god	1696,2 ·t ^{0,569}	
PLOČE		
2-god	1016,6 ·t ^{-0,567}	
5-god	1265,7 ·t ^{-0,552}	
10-god	1390,8 ·t ^{-0,535}	
25-god	1558,7 ·t ^{-0,527}	
50-god	1651,7 ·t ^{-0,516}	
100-god	1768,1 ·t ^{-0,512}	

Slika 4.4.12. ITP krivulje za postaju Gospić

Slika 4.4.13. ITP krivulje za postaju Zadar

Slika 4.4.14. ITP krivulje za postaju Split

Slika 4.4.15. ITP krivulje za postaju Ploče

4.5 Oblici projektnog pljuska

Na temelju prethodno definiranih HTP krivulja te koristeći metodologiju obrazloženu u poglavlju 3.5, provedena je procjena oblika projektnog pljuska za različita trajanja i vjerojatnost pojavljivanja za odabrane ombrografske postaje. U prvom koraku predmetne analize definirani su bezdimenzionalni oblici projektnog pljuska iz statističke obrade povijesnih zabilježenih pljuskova, a potom su bezdimenzionalnim oblicima pljuska pridodane vrijednosti iz HTP krivulja kako bi se definirano konačni vremenski zapis projektnog pljuska za svaki povratni period, odnosno vjerojatnost pojavljivanja.

Na slikama 4.5.1 – 4.5.5 prikazani su svi identificirani kišni događaji te odabrani kritični pljuskovi na ombrografskim postajama Poreč, Gospić, Zadar, Split-Marjan i Ploče, s podacima o trajanju i količini pljuska te uz prikaz histograma trajanja pljuska. Na svim postaja najveći broj evidentiranih pljuskova kratkog je trajanja (do 3h), a pojedinačni događaju rijetko premašuju trajanje 24h.

Poreč (1984.-2020.)

Slika 4.5.1. Identificirani kišni događaji i odabrani kritični pljuskovi te histogram trajanja odabranih pljuskova na ombrografskoj postaji Poreč.

Gospić (1961.-2020.)

Slika 4.5.2. Identificirani kišni događaji i odabrani kritični pljuskovi te histogram trajanja odabranih pljuskova na ombrografskoj postaji Gospić.

Split-Marjan (1961.-2020.)

Slika 4.5.5. Identificirani kišni događaji i odabrani kritični pljuskovi te histogram trajanja odabranih pljuskova na ombrografskoj postaji Ploče.

Nakon odabira kritičnih pljuskova, provedena je analiza oblika projektnog pljuska za sve odabrane ombrografske postaje metodom prosječne varijabilnosti. Na slikama 4.5.6 – 4.5.10 prikazani su bezdimenzionalni oblici projektnog pljuska za rijetke (eng. *rare*) i česte (eng. *frequent*) događaje te za trajanja 1, 2, 3, 4.5, 6, 9, 12, 18 i 24 sata.

Poreč

Slika 4.5.6. Bezdimenzionalni oblik projektnog pljuska za česte (eng. *frequent*) i rijetke (eng. *rare*) događaje te za trajanja od 1 do 24 h za ombrografsku postaju Poreč.

Gospić

Slika 4.5.7. Bezdimenzionalni oblik projektnog pljuska za česte (eng. *frequent*) i rijetke (eng. *rare*) događaje te za trajanja od 1 do 24 h za ombrografsku postaju Gospić.

Zadar

Slika 4.5.8. Bezdimenzionalni oblik projektnog pljuska za česte (eng. *frequent*) i rijetke (eng. *rare*) događaje te za trajanja od 1 do 24 h za ombrografsku postaju Zadar.

T=1.0 h T=2.0 h T=3.0 h ò Ó Ó T=4.5 h T=6.0 h T=9.0 h Bezdimenzionalna količina (%) 0 0 09 09 08 ò ò Ó T=12.0 h T=18.0 h T=24.0 h Rare Frequent Ó Ó Ó Bezdimenzionalno trajanje (%)

Split-Marjan

Slika 4.5.9. Bezdimenzionalni oblik projektnog pljuska za česte (eng. *frequent*) i rijetke (eng. *rare*) događaje te za trajanja od 1 do 24 h za ombrografsku postaju Split-Marjan.

Ploče

Slika 4.5.10. Bezdimenzionalni oblik projektnog pljuska za česte (eng. *frequent*) i rijetke (eng. *rare*) događaje te za trajanja od 1 do 24 h za ombrografsku postaju Ploče.

Konačan oblik projektnog pljuska određen je pridruživanjem vrijednosti HTP krivulja te je prikazan kao pluviogram određenog trajanja. Na slikama 4.5.11 – 4.5.15 prikazani su projektni pljuskovi za povratne periode 5, 25 i 100 godina te za trajanja 1, 2, 3, 4.5, 6, 9, 12, 18 i 24 sata. Tablični zapis svih vrijednosti dan je u Prilogu A ovog dokumenta te se kao takav može direktno primijeniti za proračun poplava oborinskih voda na odabranim pilot područjima.

Slika 4.5.11. Projektni pljusak za povratne periode 5, 25, i 100 godina (VGP 20, 4, i 1 %) te za trajanja od 1 do 24 h za ombrografsku postaju Poreč.

Slika 4.5.12. Projektni pljusak za povratne periode 5, 25, i 100 godina (VGP 20, 4, i 1 %) te za trajanja od 1 do 24 h za ombrografsku postaju Gospić.

Zadar

Slika 4.5.13. Projektni pljusak za povratne periode 5, 25, i 100 godina (VGP 20, 4, i 1 %) te za trajanja od 1 do 24 h za ombrografsku postaju Zadar.

Split-Marjan

Slika 4.5.14. Projektni pljusak za povratne periode 5, 25, i 100 godina (VGP 20, 4, i 1 %) te za trajanja od 1 do 24 h za ombrografsku postaju Split-Marjan.

Ploče

Slika 4.5.15. Projektni pljusak za povratne periode 5, 25, i 100 godina (VGP 20, 4, i 1 %) te za trajanja od 1 do 24 h za ombrografsku postaju Ploče.

4.6 Prostorna varijabilnost ekstrema količine oborina između pilot područja

U ovom poglavlju provedena je usporedba prostorne varijabilnosti maksimalnih vrijednosti kratkotrajnih jakih oborina (Slike 4.6.1 - 4.6.3) kao i višednevnih oborina po pojedinim povratnim periodima (Slike 4.6.4 - 4.6.6). Vidljivo je da se vrijednosti dobivene po pojedinom povratnom periodu (vjerojatnostima pojave) imaju dosta široki raspon odstupanja, koji se povećava s povećanjem povratnog perioda njihova javljanja, odnosno sa sniženjem vjerojatnosti njihove pojave. Vidljivo je da kod svih analiziranih postaja koje svoj položaj imaju u relativno maloj odaljenosti od mora vrijednosti dobivene prema spomenutim krivuljama imaju vrlo sličan hod, dok bitno odstupa značajka HTP krivulje za postaju Gospić koja ima u odnosu na kraća trajanja, naglašenije oborinske intenzitete duljih trajanja. Također odstupaju i vrijednosti HTP krivulja za postaje Ploče te naročito Zadar čije vrijednosti svih trajanja rjeđih od 10-godišnjeg povratnog perioda imaju daleko naglašenije vrijednosti. Razlog tome je okolnost da su na postaji Zadar zabilježeni ekstremi čije je karakter pojave puno rjeđi od duljine analiziranog razdoblja. Zbog takve povijesno zabilježene dvije pojave "outliera" i raspodjela vjerojatnosti pojave karakterističnih godišnjih vrijednosti za tu postaju uzimajući ih u analize na standardan način vjerojatno je naglašenija, posebno za pojave rijetkih događanja. Naime, 1986. na postaji Zadar zabilježen je 24 satni maksimum od 333,4 mm, a 2016. zabilježena je bliska dnevna količina oborina od 281,8 mm. S druge strane, slijedeći po veličini zabilježeni 24 satni ekstrem iznosio je svega 165,3 mm (1966.), dakle reda veličine dvostruko manje nego li spomenuti apsolutni maksimum. Pojave takvih dvaju najizraženijih ekstrema imale su za posljedicu relativno povećanje vrijednosti HTP krivulja (do 24 sata, te 1-5 dana), pa čak i ITP krivulja (do 2 sata).

Provedene su i regionalne usporedbe HTP krivulja višednevnih oborina (1-5 dana) za trajanja dulja od 1 dana (Slike 4.6.4 – 4.6.6). Iz njih je također vidljivo da kod svih analiziranih postaja koje svoj položaj imaju u relativno maloj odaljenosti od mora vrijednosti dobivene prema spomenutim krivuljama imaju sličan hod. Najsličniji hod imaju HTP krivulja na lokacijama Poreč i Split, dok je donekle različit hod značajki HTP krivulje za postaju Gospić koja ima u odnosu na kraća trajanja, naglašenije oborinske intenzitete duljih trajanja kod rjeđih povratnih perioda. Također, kao i kod provedenih usporedbi HTP krivulja trajanja do 24 sata, odstupaju i vrijednosti HTP krivulja za postaje Ploče te naročito Zadar čije vrijednosti svih trajanja rjeđih od 5-godišnjeg povratnog perioda imaju daleko naglašenije vrijednosti.

Slika 4.6.1. Usporedni prikaz proračunatih vrijednosti HTP krivulja za povratni period od 5 godina

Slika 4.6.2. Usporedni prikaz proračunatih vrijednosti HTP krivulja za povratni period od 25 godina

Slika 4.6.3. Usporedni prikaz proračunatih vrijednosti HTP krivulja za povratni period od 100 godina

Slika 4.6.4. Usporedni prikaz proračunatih vrijednosti HTP krivulja višednevnih oborina za povratni period od 5 godina

Slika 4.6.5. Usporedni prikaz proračunatih vrijednosti HTP krivulja višednevnih oborina za povratni period od 25 godina

Slika 4.6.6. Usporedni prikaz proračunatih vrijednosti HTP krivulja višednevnih oborina za povratni period od 100 godina

5 Trenutna saznanja o utjecaju klimatskih promjena na značajke pojave kratkotrajnih jakih oborina

Uslijed opaženih klimatskih promjena i globalnog zagrijavanja znanstvena zajednica je prepoznala mogućnost jačanja utjecaja kratkotrajnih jakih oborina na pojavu poplava.

Čest koncept kojim se povezuje utjecaj porasta temperature na intenzitet oborine uključuje primjenu Clausius-Clapeyronove jednadžbe koja povezuje promjenu ravnotežnog tlaka vodene pare pri zasićenju s promjenom temperature zraka. Pretpostavka je da će veza između intenziteta oborine i temperature zraka biti bliska vezi ravnotežnog tlaka vodene pare pri zasićenju i temperature zraka jer dostupna vodena para utječe na mogućnost kondenzacije te formiranja oblačnih sustava iz kojih će se razviti intenzivni oborinski događaji. Naravno, osnovna svrha primjene ovog koncepta je omogućiti sažimanje velikog broja raznovrsnih vremenskih situacija koje će ovisiti i o svim drugim faktorima i procesima koji se javljaju u formiranju oblaka iz vodene pare a zatim i oborine iz oblaka i oblačnih sustava. Lokalni procesi kod kojih postoji značajno razumijevanje dodatnog pojačanja početnog utjecaja porasta temperature na porast intenziteta oborine uključuju oslobađanje latentne topline i prateći razvoj konvektivnih sustava, utjecaj topografije na jačanje konvektivne nestabilnosti te utjecaj konvergencije u atmosferskom strujanju a koja omogućava dodatan izvor vodene pare za razvoj oblačnih i oborinskih sustava.

Navedeni tip analiza u smislu skaliranja u ovisnosti o promjeni temperature općenito upućuje na zaključak u kojem intenzivne količine oborine s dužim vremenskim trajanjem (reda veličine jednog dana i dulje) prate skaliranje koje proizlazi iz Clausius-Clapeyronove jednadžbe te iznosi između 6 % i 7 % porasta u intenzitetu takvih oborinskih događaja za svaki porast temperature od 1 °C. Ovaj općeniti rezultat može dodatno ovisiti o utjecaju atmosferskog strujanja i specifičnostima pojedine geografske regije te je prisutna značajna promjenjivost ovisno o lokaciji i tipu mjerenja odnosno tipu korištenih modela. Ipak, intenziteti vrlo rijetkih dnevnih količina oborine a posebno intenziteti kratkotrajnih (satni i minutni intenziteti) jakih oborina mogu biti i dvostruko osjetljiviji na porast temperature zraka te dosezati između 12 % i 14 % porasta u intenzitetu za svaki porast temperature od 1 °C. porast u intenzitetu dnevnih, satnih i minutnih oborinskih intenziteta ima potencijal vrlo značajnog porasta. Ovdje je potrebno razlikovati promjenu temperature vezanu uz globalno zagrijavanje, u odnosu na promjene temperature koje se događaju na nekoj lokaciji unutar dana ili

godine no za očekivati je da će skaliranje koje dovodi do porasta u intenzitetu jakih oborina biti blisko u oba slučaja.

Utjecaj globalnog zagrijavanja na intenzivne oborinske događaje moguće je istražiti za razdoblja povijesne i sadašnje klime (koristeći dostupna mjerenja i klimatske modele) te buduće klime (koristeći klimatske modele u idealiziranim simulacijama ili projekcijama uz pretpostavke različitih scenarija emisija i koncentracija stakleničkih plinova). U smislu korištenja radarskih i staničnih mjerenja potrebno je osigurati dovoljno duge i homogene nizove i polja koji omogućavaju razdvajanje dugotrajnih klimatskih promjena od prirodne promjenjivosti. U smislu korištenja klimatskih modela visoke rezolucije, rana istraživanja su bila opterećena korištenjem jednog ili manjeg broja klimatskih modela (što dovodi do ovisnosti rezultata o postavljenim pretpostavkama u istim modelima) te relativno kraćih razdoblja simulacija od 10-ak godina. Razvojem regionalnih klimatskih modela, a kasnije i klimatskih modela visoke rezolucije te jačanjem potrebnih računalnih kapaciteta novije generacije klimatskih simulacija i projekcija uključuju veći broj korištenih klimatskih modela (tzv. ansambli simulacija od kojih je za izdvojiti CORDEX Flagship Pilot Study Convection; Coppola i sur. 2020) i dulja trajanja simuliranih povijesnih, sadašnjih i budućih razdoblja. S obzirom na rastući broj radova koji koriste rezultate klimatskih modela, potrebno je naglasiti razliku između tzv. regionalnih klimatskih modela (eng. Regional Climate Models) i klimatskih modela visoke rezolucije (eng. Convection-Permitting Climate Models). Tipični regionalni klimatski modeli koriste prostornu mrežu modela na rezoluciji između 10 km i 50 km te parametriziraju procese vezane za duboku konvekciju (u praksi, koriste poluempirijske izraze koji povezuju neka svojstva oblačnih sustava koji se javljaju pri dubokoj konvekciji s atmosferskim varijablama koje su direktno simulirane a na temelju statističkih veza proizašlih iz analiza motrenja istih veličina). S druge strane, nove generacije klimatskih modela visoke rezolucije koriste prostorne rezolucije između 1 km i 4 km te izravno simuliraju procese vezane za duboku konvekciju tj. ne koriste parametrizacije za ovaj tip procesa. U dugoročnom razvoju klimatskih modela potrebno je adresirati i sve ostale procese koji se zbog malih prostornih dimenzija moraju i dalje parametrizirati (plitka konvenkcija, turbulentno miješanje itd).

Objedinjujući različite izvore informacija i mogućnosti analiza moguće je ugrubo sažeti koliko kvalitetno možemo detektirati pojedinačne vremenske pojave koje dovode do intenzivnih oborina i s njima povezane varijable u odnosu na trenutačan nivo razumijevanja izvora i mehanizama tih istih promjena (Slika 5.1.1). Na primjer, u slučaju analiza satnih intenziteta jakih oborina imamo trenutno ograničene mogućnosti detekcije promjena no nešto veći stupanj pouzdanosti u razumijevanju

procesa koji dovode do promjena kada je ona detektirana. Ranije navedeni primjer primjenjivosti Clausius-Clapeyronovog skaliranja je u središtu ovakvog prikaza, s osrednjim mogućnostima u oba aspekta (detekcija promjene i razumijevanje promjene). Određena ograničenja u primjeni Clausius-Clapeyronovog skaliranja dokumentirana su u npr. Drobinski i sur. (2018) u kojem je analizirana izmjerena i modelirana veza između dnevne temperatura zraka i satnih količina oborine na području Sredozemlja, uključujući i mjerenja na lokaciji Split-Marjan. Konkretna odstupanja od uobičajenog skaliranja su detektirana za visoke temperature zraka u smislu negativne promjene u intenzitetu. Ova zamjena i iznosa i predznaka se često objašnjava kao posljedica ograničene dostupne količine vlage što može biti relativno čest slučaj na području Sredozemlja u razdoblju dugih toplinskih valova i suša. Kao zadnji primjer, promjene specifične vlažnosti zraka današnji sustavi za motrenja i modeliranja mogu izvrsno detektirati, a postoji i jasan fizikalni i analitički okvir koji ovakav tip promjena može uspješno interpretirati.

Slika5.1.1. Mogućnost detekcije promjena (x-os) i stupanj pouzdanosti u razumijevanju mehanizma promjena (y-os) za različite procese koji dovode do utjecaja klimatskih promjena na značajke pojave jakih oborina, uključujući i kratkotrajne. Slika preuzeta za potrebe ovog izvješća iz Fowler i sur. (2021a).

Slika 5.1.2 prikazuje rezultate projekcija za klimatske simulacije iz Pichelli i sur. (2021) za alpsko područje te sadržava veći dio Hrvatske u domeni simulacija i analiza. Za uočiti je povećanje intenziteta satnih količina oborine i smanjenje učestalosti takvih događaja u razdoblju do kraja 21. stoljeća u odnosu na sadašnju klimu. Osim određenih prostornih varijacija u amplitudi relativnih promjena, za uočiti su intenzivnije promjene u klimatskim modelima visoke rezolucije što dodatno ukazuje na važnost njihovog daljnjeg razvoja s velikim potencijalom primjene. Određeno ograničenje metodologije u Pichelli i sur. (2021) je primjena scenarija značajnog povećanja emisija i koncentracija stakleničkih plinova RCP8.5, s obzirom da je trenutna putanja stvarnih emisija ipak bliža nešto umjerenijem scenariju RCP4.5. Također, prikazane rezultate je potrebno pažljivo interpretirati zbog izražene prostorne varijabilnosti te je prikladno dovoditi zaključke samo za čitavu prikazanu domenu ili određene veće pod domene.

Slika 5.1.2. Relativna promjena u srednjaku ansambla modela u razdoblju 2090.-2099. u odnosu na razdoblje 1996.-2005. za ljetne indekse satne oborine i scenarij RCP8.5. Prvi red: promjena intenziteta, drugi red: promjena učestalosti. Prvi stupac: klimatski modeli visoke rezolucije, desni stupac: regionalni klimatski modeli koji su izvor rubnih uvjeta za klimatske modele visoke rezolucije. Slika preuzeta i modificirana (zadržana 4 panela od ukupno 6) za potrebe ovog izvješća iz Pichelli i sur. (2021).

Preporuke za jačanje postojećih i razvoj budućih smjerova istraživanja uključuju daljnje korištenje i razvoj klimatskih modela na rezolucijama koje direktno simuliraju duboku konvekciju (tipičnih prostornih rezolucija u modelima od 1 km do 4 km) i jačanje metoda za detekciju i atribuciju utjecaja klimatskih promjena na vremenske pojave kratkotrajnih jakih oborina. Također, potrebno je uložiti značajne napore u detaljnijem razumijevanju na koji način globalno zagrijavanje utječe na atmosfersku cirkulaciju na sinoptičkoj skali, dinamiku konvektivnih oluja te stabilnost atmosfere, tj. atmosferske procese koji mogu modificirati osnovnu termodinamičku vezu između promjena u temperaturi zraka i promjena u intenzitetu kratkotrajnih jakih oborina. U smislu analiza mjerenih kratkotrajnih jakih oborina, usporedba različitih studija je otežana različitim metodologijama koje sadrže varijacije u pristupima kontroli kvalitete podataka, duljini dostupnih mjerenja, fizikalnim veličinama koje su analizirane, različitostima u primijenjenim statističkim metodama itd., a koje je potrebno i moguće uskladiti kako bi se dobila jasnija regionalna i globalna slika. Konačno, utjecaj klimatskih promjena na značajke pojave kratkotrajnih jakih oborina je potrebno usporedno analizirati i u odnosu na druge procese koji mogu utjecati na iste proces (npr. urbanizacija koja mijenja tip podloge i može lokalno pojačati intenzitet oluja, površinsko otjecanje i povećati vjerojatnost poplave; Fowler i sur., 2021b).

6 Zaključak i preporuke

U predmetnoj su studiji analizirane opće klimatske prilike na pet pilot područja projekta STREAM: Poreč, Gospić, Zadar, Biograd na Moru, Split i Metković. Provedena je prostorna i vremenska analiza osnovnih klimatoloških parametara, temperature zraka i količine oborine na mjesečnoj i godišnjoj skali. Potom su analizirane maksimalne godišnje količine oborine kraćih trajanja (od 10 min do 5 dana) primjenom opće teorije ekstrema. Za analizu su korišteni podaci s pet meteoroloških postaja najbližih predmetnim lokacijama iz najduljeg raspoloživog niza mjerenja.

Rezultati trenda na pet pilot područja pokazuju značajno povećanje kratkotrajnih količina oborine samo na postaji Ploče (pilot područje Metkovića) i to za 12-, 18- i 24-satna trajanja. Na svim pilot područjima, osim Poreča, prevladava negativan trend za najkraća trajanja (do 60 minuta) dok je za dulja trajanja predznak trenda uglavnom pozitivan. Samo je na području Zadra uočeno konzistentno smanjenje godišnjih maksimalnih vrijednosti za sva trajanja. Treba imati na umu da su za analizu ombrografskih podataka, usporedbom s kišomjernim postajama (poglavlje 4.1.) na gotovo svakoj analiziranoj postaji uklonjeni maksimumi u pojedinim godinama koji se ne mogu jednostavno popuniti radi lokalnih karakteristika oborine i rijetke mreže ombrografskih mjerenja u Hrvatskoj. Stoga rezultate trenda kratkotrajnih količina oborine (do 24 h) treba koristiti s dodatnim oprezom

Predmetni dokument rezultirao je i noveliranim podlogama o značajkama HTP i ITP krivulja odabranih lokaliteta na pilot područjima priobalnog dijela Hrvatske – počev od Poreča na sjeveru pa do Ploča na jugu. Uz to, definirao je i do sada neobrađivane oblike tzv. "projektnog pljuska" na analiziranim lokalitetima kao nužne podloge za primjenu novijih pristupa u oborinskoj odvodnji, procjeni opasnosti od pluvijalnih poplava te dimenzioniranju objekata i sustava oborinske odvodnje koji vode računa o cjelokupnom volumenu oborinskog otjecanja i njegovoj raspodjeli tijekom vremena.

Provedene regionalne analize pokazale su da ne postoji izražena prostorna izdiferenciranost značajki kratkotrajnih jakih oborina unutar koje bi se mogle povezati sa značajkama pojedinih pilot područja. Jedina iznimka je područje Gospića kod koga su relativno naglašenije oborine duljih trajanja u odnosu na one kraćih trajanja. Utvrđeno je i da također odstupaju i vrijednosti HTP krivulja za postaje Ploče te naročito Zadar čije vrijednosti svih trajanja rjeđih od 10-godišnjeg povratnog perioda imaju daleko naglašenije vrijednosti. Razlog tome je okolnost da su na postaji Zadar zabilježeni ekstremi (tzv. "outlieri") čiji je karakter pojave puno rjeđi od duljine analiziranog

razdoblja. Pojave takvih dvaju najizraženijih ekstrema imale su za posljedicu relativno povećanje vrijednosti HTP krivulja (do 24 sata, te 1-5 dana), pa čak i ITP krivulja (do 2 sata). Stoga, prikazani rezultati za postaju Zadar imaju nižu razinu pouzdanosti od ostalih postaja.

Zaključno treba naglasiti nužnost provedbe sveobuhvatnije analize kratkotrajnih jakih oborina u Hrvatskoj, kako bi se osigurala primjerena inženjerska oborinska podloga za procjene poplava i planiranje mjera za ublažavanje istiha. Pri tome je takvu obradu nužno provesti na njenom cjelokupnom prostoru, uzimajući u obzir sve ombrografske postaje za koje postoje na raspolaganju raspoloživi nizovi ombrografskih podataka respektabilne duljine od najmanje 30 godina. Kao početni korak predlaže se analiza oborinskog režima za priobalni dio Hrvatske i njegovo gorsko kopneno zaleđe, na način da se u obradu uključe rezultati s ombrografskih postaja obrađeni u ovom projektu, u okviru prethodnog dokumenta RAINMAN (Građevinski fakultet u Rijeci I DHMZ, 2019) te podaci s postaja koje su bile izuzete iz tih obrada, a imaju raspoložive nizove podataka duljine barem 30 godina.

Popis literature

- Ball J, Babister M, Nathan R, Weeks W, Weinmann E, Retallick M, Testoni I, (Editors) Australian Rainfall and Runoff: A Guide to Flood Estimation, Commonwealth of Australia (Geoscience Australia), 2019.
- Bonacci, O. (1994): Oborine glavna ulazna veličina u hidrološki ciklus. Geing, Split, 341str.
- Cindrić, K., Nirnac, I., Gajić-Čapka, M., Rubinić, J. (2014): Vremenske promjene kratkotrajnih jakih oborina u razdoblju 1955.-2010. za Split i Varaždin, Hrvatske vode 22/89, 239-250.
- Coles, S. (2001): An Introduction to Statistical Modeling of Extreme Values. Springer, 208 str.
- Coppola E. i sur. (2020): A First-of-Its-Kind Multi-Model Convection Permitting Ensemble for Investigating Convective Phenomena over Europe and the Mediterranean. Climate Dynamics 55, no. 1: 3–34, https://doi.org/10.1007/s00382-018-4521-8
- Drobinski P. i sur. (2018): Scaling Precipitation Extremes with Temperature in the Mediterranean: Past Climate Assessment and Projection in Anthropogenic Scenarios. Climate Dynamics 51, no. 3: 1237–57, https://doi.org/10.1007/s00382-016-3083-x
- Gajić-Čapka, M., Cindrić K., Pasarić Z. (2014): Trends in precipitation indices in Croatia, 1961–2010. Theoretical and Applied Climatology, 121 (1-2). doi: 10.1007/s00704-014-1217-9
- Građevinski fakultet u Rijeci I DHMZ (2019): Analiza oborina na pilot područjima u Istri i Zagrebu (projekt RAINMAN). Studija. Rijeka, Zagreb.
- Fowler H. J. i sur. (2021a): Towards Advancing Scientific Knowledge of Climate Change Impacts on Short-Duration Rainfall Extremes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 2195: 20190542, https://doi.org/10.1098/rsta.2019.0542
- Fowler H. J. i sur. (2021b): Anthropogenic Intensification of Short-Duration Rainfall Extremes. Nature Reviews Earth & Environment 2, 107–22, https://doi.org/10.1038/s43017-020-00128-6
- Helsel, D. R., Hirsch, R. M. (2002): Statistical Methods in Water Resources Techniques of Water Resources Investigations, U.S. Geological Survey.
- IPCC (2022): IPCC Sixth Assessment Report (AR6): Climate Change 2022 Impacts, Adaptation and Vulnerability: Technical Summary.
- Klein Tank, A. M. G., Zwiers, F. W., Zhang, X. (2009): Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorological Organisation, WMO-TD No. 1500, WCDMP-No. 72, 52 pp.

- Krvavica, N., Jaredić, K., Rubinić, J. (2018): Metodologija definiranja mjerodavne oborine za dimenzioniranje infiltracijskih sustava. Građevinar, 70(8), 657-669.
- Krvavica, N., i Rubinić, J. (2020). Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments. Water, 12(7), 2044.
- Perčec Tadić, M. (2010). Gridded Croatian climatology for 1961-1990. Theoretical and applied climatology, 102 (1-2), 87-103 doi:10.1007/s00704-009-0237-3.
- Perčec Tadić Melita, Pasarić Zoran, Guijarro Jose A. Croatian High-Resolution Monthly Gridded Data Set of Homogenised Surface Air Temperature, poslano u Theor Appl Climatol 8.3.2022.
- Pilgrim, D.H. (1987): Australian rainfall and runoff, a guide to flood estimation. The Institution of Engineers, ACT, Australia, 1987.
- Pichelli E. i sur. (2021): The First Multi-Model Ensemble of Regional Climate Simulations at Kilometer-Scale Resolution Part 2: Historical and Future Simulations of Precipitation. Climate Dynamics 56, 11: 3581– 3602, https://doi.org/10.1007/s00382-021-05657-4
- Ivančan-Picek, B., Horvath, K., Strelec Mahović, N., Gajić-Čapka, M. (2014): Forcing mechanisms of a heavy precipitation event in the southern Adriatic area, Natural hazards, 72, 2; 1231-1252.UCAR, 2010
- Pandžić, K. i suradnici, 2008: Naputak za opažanja i mjerenja na glavnim meteorološkim postajama, DHMZ, Zagreb, 342 str.
- Sen, P. K. (1968): Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 63, 1379 -1389.
- Slater, L., Villarini, G. (2017): On the impact of gaps on trend detection in extreme streamflow time series. International Journal of Climatology, 37, 3976-3983
- Strategija prilagodbe klimatskim promjenama u Republici Hrvatskoj za razdoblje do 2040. godine s pogledom na 2070. godinu (NN 46/2020).

Prilog A: Tablice projektnih pljuskova

Tablica A.1. Projektni pljusak povratnog perioda 5 godina (VGP 20%) za trajanja 60 min do 24 h za postaju
Poreč, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	53.93	66.35	73	80.23	84.58	89.44	91.86	95.95	100.14
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.6	1.71	2	2.07	1.55	21.2	6.16	7.55	5.79
2	2.05	3.9	6.39	19.76	8	11.89	3.09	12.13	14.15
3	1.01	13.46	10.91	9.41	1.19	0.2	3.37	5.65	20.74
4	2.41	8.53	18.42	6.04	0.74	0.06	2.36	4.34	8.46
5	6.39	7.22	9.15	1.76	1.02	0.2	10.81	2.71	4.96
6	3.66	6.04	5.14	1.05	0.51	0.77	8.09	2.1	3.49
7	13.19	11.22	3.98	3.73	0.27	0.99	2.11	3.17	0.82
8	7.88	5.23	1.71	7.6	0.62	0.2	2.63	0	0.07
9	4.2	2.8	1.14	4.94	2.24	2.93	1.39	0.08	0
10	5.34	3.23	2.23	11.47	4.72	3.54	5.11	0	0
11	2.86	2.32	3.28	4.28	2.87	15.28	4.2	0	0.19
12	3.33	0.7	2.52	0.45	6.38	6.76	1.89	0	1.39
13	0	0	1.44	0.19	13.17	1.86	17.75	0.5	0.33
14			2.76	0.74	21.89	9.71	14.12	5.13	1.72
15			0.79	2.94	9.62	2.32	0.8	0.16	0
16			0.6	2.47	0.81	5.96	1.68	1.52	0.52
17			0.3	1.31	5.48	4.29	0.03	0.23	2.88
18			0.26	0.02	3.48	1.28	0.03	0.87	2.21
19			0	0	0	0	0	0.58	4.43
20							1.11	3.74	0.67
21							0.63	6.61	7.03
22							0.3	10.34	10.08
23							3.73	19.75	6.47
24							0.46	8.8	3.74
25							0	0	0

Tablica A.2. Projektni pljusak povratnog perioda 25 godina (VGP 4%) za trajanja 60 min do 24 h za postaju
Poreč, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	76.77	103.88	120.51	136.44	147.15	158.75	162.05	162.05	167.66
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.19	2.1	0.96	4.5	2.03	2.84	3.7	12.75	9.69
2	4.47	4.74	6.06	32.23	22.35	9.83	5.31	20.48	23.69
3	6.85	16.36	22.41	3.65	13.98	1.6	2.89	9.54	34.73
4	7.7	10.86	3.38	0.76	0.95	6.23	2.54	7.33	14.17
5	15.88	12.73	1.71	1.95	4.61	3.69	15.72	4.57	8.3
6	5.11	8.16	1.47	1.54	2.48	22.44	6.52	3.55	5.85
7	8.66	23.14	13.75	2.52	0.33	18.9	4.39	5.35	1.38
8	6.15	9.1	15.69	6.73	0.85	4.97	11.56	0	0.11
9	11.52	6.7	8.27	3.05	6.36	11.95	7.48	0.14	0
10	3.65	5.54	10.38	18.96	3.61	0.84	5.92	0	0
11	3.26	3.36	4.74	15.03	3.12	38.13	25.2	0	0.32
12	2.34	1.09	6.75	10.67	9.49	7.39	9.38	0	2.34
13	0	0	3.92	8.97	33.28	0.4	33.28	0.85	0.56
14			9.22	5.26	16.96	28.91	20.32	8.66	2.88
15			5.83	12.31	8.52	0	1.86	0.27	0
16			2.36	7.86	5.53	0.04	1.36	2.57	0.87
17			3	0.41	11.28	0.5	0.31	0.38	4.83
18			0.6	0.03	1.44	0.09	0.72	1.47	3.69
19			0	0	0	0	0	0.97	7.41
20							0.83	6.32	1.12
21							0.52	11.16	11.77
22							0	17.46	16.87
23							2.23	33.36	10.84
24							0	14.86	6.25
25							0	0	0

Tablica A.3. Projektni pljusak povratnog perioda 100 godina (VGP 1%) za trajanja 60 min do 24 h za postaju
Poreč, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	95.47	141.03	172.21	202.87	226.2	250.09	255.25	255.25	255.25
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.48	2.85	1.37	6.69	3.12	4.47	5.83	20.09	14.75
2	5.56	6.44	8.65	47.93	34.35	15.49	8.36	32.26	36.06
3	8.52	22.21	32.02	5.42	21.48	2.52	4.55	15.03	52.87
4	9.57	14.74	4.84	1.14	1.46	9.81	4.01	11.55	21.57
5	19.75	17.28	2.45	2.91	7.09	5.81	24.77	7.21	12.63
6	6.35	11.08	2.1	2.29	3.8	35.36	10.27	5.58	8.91
7	10.77	31.41	19.65	3.75	0.51	29.78	6.91	8.42	2.1
8	7.64	12.36	22.42	10	1.31	7.83	18.2	0	0.17
9	14.32	9.1	11.82	4.53	9.78	18.83	11.77	0.21	0
10	4.54	7.52	14.83	28.2	5.55	1.33	9.33	0	0
11	4.06	4.56	6.78	22.35	4.8	60.06	39.69	0	0.49
12	2.91	1.48	9.65	15.87	14.58	11.64	14.77	0	3.56
13	0	0	5.61	13.34	51.16	0.63	52.43	1.34	0.85
14			13.17	7.81	26.08	45.54	32.01	13.64	4.39
15			8.33	18.3	13.09	0	2.93	0.43	0
16			3.38	11.69	8.49	0.06	2.14	4.05	1.32
17			4.28	0.6	17.34	0.79	0.5	0.6	7.35
18			0.85	0.05	2.21	0.15	1.14	2.32	5.62
19			0	0	0	0	0	1.53	11.28
20							1.3	9.95	1.71
21							0.82	17.58	17.92
22							0	27.5	25.69
23							3.52	52.55	16.5
24							0	23.4	9.52
25							0	0	0

Tablica A.4. Projektni pljusak povratnog perioda 5 godina (VGP 20%) za trajanja 60 min do 24 h za postaju
Gospić, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	36.36	44.41	50.75	57.64	62.18	70.01	77.14	88.93	97.26
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	0.96	0.97	1.52	0.37	0.19	5.11	0.46	5.28	6.84
2	1.92	1.75	6.17	2.41	10.67	4.26	0.65	6.01	19.24
3	2.74	2.59	2.92	1.98	8.24	1.66	3.64	1.74	9.62
4	4.94	3.55	3.66	1.61	5.74	6.09	4.22	18.18	7.74
5	6.25	9.47	2.24	4.35	1.16	3.24	1.3	7.3	10.97
6	7.42	7.33	0.82	8.28	0.45	9.55	2.19	1.52	5.79
7	3.12	6.04	0.33	3.71	4.23	1.39	7.41	2.82	3.41
8	3.91	4.96	0.62	2.28	3.58	0.48	3.15	3.3	5.08
9	1.78	3.85	1.26	6.73	2.36	0.06	2.49	0.85	4.56
10	1.51	2	1.81	3.12	6.39	0	4.64	0.1	3.02
11	1.14	1.49	3.01	1.19	3.29	2.7	2.03	0.21	0.1
12	0.67	0.41	4.32	5.81	2.64	6.89	1.03	0.61	0.04
13	0	0	7.18	11.3	3.9	8.15	0.27	2	0.33
14			3.92	2.67	5.15	1.01	1.16	1.03	3.72
15			1.05	0.55	1.77	2.18	6.33	0.5	0.72
16			2.57	0.29	0.88	13.58	1.5	0.32	1.8
17			4.91	0.13	1.43	3.65	5.22	3.12	2.1
18			2.45	0.83	0.1	0	9.27	1.26	4.07
19			0	0	0	0	13.98	9.55	2.37
20							2.74	12.03	1.41
21							1.73	2.44	0.23
22							0.84	4.06	0.41
23							0.73	4.67	1.09
24							0.13	0.07	2.58
25							0	0	0

Tablica A.5. Projektni pljusak povratnog perioda 25 godina (VGP 4%) za trajanja 60 min do 24 h za postaju
Gospić, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	51.22	61.34	69.82	80.13	88.65	100.43	108.46	124.56	139.53
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	2.09	1.19	3.86	1.82	1.73	10.01	5.09	4.35	30.07
2	3.22	2.39	10.9	7.73	16.94	15.37	3.31	2.96	16.94
3	5.52	6.7	5.49	5.65	1.25	3.84	7.79	4.71	1.29
4	4.53	11.49	3.01	2.56	0.52	22.14	1.62	7.24	1.05
5	10.49	13.42	3.24	4.1	1.44	4.4	3.7	13.09	14.17
6	8.66	8.71	2.62	3.19	0.28	2.58	2.17	6.35	1.87
7	3.95	3.19	2.35	0.87	3.98	0.77	5.91	10.56	0.36
8	6.68	5.13	2.09	3.61	13.8	0.57	0.96	3.91	3.31
9	2.77	4.52	3.58	4.82	4.31	1.47	0.56	2.61	1.51
10	1.48	1.77	1.49	3.04	7.54	1.16	1.21	0.14	2.89
11	1.12	2.25	6.29	2.31	1.02	0.34	0.79	1.02	3.86
12	0.71	0.58	7.4	12.04	0.67	3.02	0.07	1.28	0.48
13	0	0	4.46	15.91	8.75	8.23	0.26	2.24	0.05
14			1.13	9.97	10.23	1.94	1.4	0.62	2.36
15			0.47	1.23	2.91	6.89	6.77	0.84	5.57
16			1.78	0.7	5.06	11.7	2.54	0.42	4.31
17			8.87	0.18	5.86	5.83	11.36	1.45	10.14
18			0.78	0.39	2.36	0.16	19.34	1.8	11.62
19			0	0	0	0	14.73	24.49	6.14
20							4.26	16.83	8.68
21							2.8	5.44	6.92
22							9.42	8.67	5.03
23							1.92	3.46	0.2
24							0.46	0.1	0.73
25							0	0	0

Tablica A.6. Projektni pljusak povratnog perioda 100 godina (VGP 1%) za trajanja 60 min do 24 h	za postaju
Gospić, količina oborine u (mm)	

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	64.3	75.81	86.05	100.65	115.86	132.57	139.02	158	180.17
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	2.63	1.48	4.75	2.28	2.27	13.21	6.52	5.52	38.83
2	4.05	2.95	13.43	9.71	22.13	20.29	4.25	3.76	21.88
3	6.93	8.28	6.76	7.09	1.63	5.07	9.98	5.98	1.67
4	5.68	14.2	3.71	3.21	0.68	29.22	2.08	9.18	1.35
5	13.17	16.59	3.99	5.16	1.88	5.81	4.74	16.61	18.29
6	10.88	10.77	3.23	4	0.37	3.41	2.78	8.06	2.41
7	4.96	3.94	2.9	1.1	5.2	1.02	7.57	13.39	0.47
8	8.39	6.34	2.58	4.54	18.04	0.75	1.23	4.96	4.27
9	3.48	5.59	4.42	6.06	5.64	1.93	0.72	3.31	1.95
10	1.85	2.19	1.83	3.82	9.85	1.53	1.55	0.18	3.74
11	1.4	2.78	7.76	2.9	1.34	0.45	1.01	1.29	4.98
12	0.89	0.71	9.13	15.12	0.87	3.98	0.1	1.62	0.62
13	0	0	5.49	19.98	11.43	10.87	0.34	2.84	0.07
14			1.4	12.53	13.37	2.56	1.8	0.78	3.05
15			0.58	1.55	3.8	9.1	8.68	1.06	7.19
16			2.19	0.88	6.61	15.44	3.26	0.53	5.56
17			10.93	0.23	7.66	7.69	14.56	1.84	13.1
18			0.97	0.49	3.09	0.21	24.79	2.28	15
19			0	0	0	0	18.88	31.07	7.92
20							5.46	21.35	11.2
21							3.59	6.91	8.93
22							12.07	11	6.49
23							2.46	4.39	0.26
24							0.59	0.12	0.94
25							0	0	0

Tablica A.7. Projektni pljusak povratnog perioda 5 godina (VGP 20%) za trajanja 60 min do 24 h za postaju
Zadar, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	53.93	66.35	73	80.23	84.58	89.44	91.86	95.95	100.14
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.6	1.71	2	2.07	1.55	21.2	6.16	7.55	5.79
2	2.05	3.9	6.39	19.76	8	11.89	3.09	12.13	14.15
3	1.01	13.46	10.91	9.41	1.19	0.2	3.37	5.65	20.74
4	2.41	8.53	18.42	6.04	0.74	0.06	2.36	4.34	8.46
5	6.39	7.22	9.15	1.76	1.02	0.2	10.81	2.71	4.96
6	3.66	6.04	5.14	1.05	0.51	0.77	8.09	2.1	3.49
7	13.19	11.22	3.98	3.73	0.27	0.99	2.11	3.17	0.82
8	7.88	5.23	1.71	7.6	0.62	0.2	2.63	0	0.07
9	4.2	2.8	1.14	4.94	2.24	2.93	1.39	0.08	0
10	5.34	3.23	2.23	11.47	4.72	3.54	5.11	0	0
11	2.86	2.32	3.28	4.28	2.87	15.28	4.2	0	0.19
12	3.33	0.7	2.52	0.45	6.38	6.76	1.89	0	1.39
13	0	0	1.44	0.19	13.17	1.86	17.75	0.5	0.33
14			2.76	0.74	21.89	9.71	14.12	5.13	1.72
15			0.79	2.94	9.62	2.32	0.8	0.16	0
16			0.6	2.47	0.81	5.96	1.68	1.52	0.52
			0.3	1.31	5.48	4.29	0.03	0.23	2.88
18			0.26	0.02	3.48	1.28	0.03	0.87	2.21
19			0	0	0	0	0	0.58	4.43
20							1.11	3.74	0.67
21							0.63	6.61	7.03
22							0.3	10.34	10.08
23							3.73	19.75	6.47
24							0.46	8.8	3.74
25							0	0	0

Tablica A.8. Projektni pljusak povratnog perioda 2 5 godina (VGP 4%) za trajanja 60 min do 24 h za postaju
Zadar, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	76.77	103.88	120.51	136.44	147.15	158.75	162.05	162.05	167.66
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.19	2.1	0.96	4.5	2.03	2.84	3.7	12.75	9.69
2	4.47	4.74	6.06	32.23	22.35	9.83	5.31	20.48	23.69
3	6.85	16.36	22.41	3.65	13.98	1.6	2.89	9.54	34.73
4	7.7	10.86	3.38	0.76	0.95	6.23	2.54	7.33	14.17
5	15.88	12.73	1.71	1.95	4.61	3.69	15.72	4.57	8.3
6	5.11	8.16	1.47	1.54	2.48	22.44	6.52	3.55	5.85
7	8.66	23.14	13.75	2.52	0.33	18.9	4.39	5.35	1.38
8	6.15	9.1	15.69	6.73	0.85	4.97	11.56	0	0.11
9	11.52	6.7	8.27	3.05	6.36	11.95	7.48	0.14	0
10	3.65	5.54	10.38	18.96	3.61	0.84	5.92	0	0
11	3.26	3.36	4.74	15.03	3.12	38.13	25.2	0	0.32
12	2.34	1.09	6.75	10.67	9.49	7.39	9.38	0	2.34
13	0	0	3.92	8.97	33.28	0.4	33.28	0.85	0.56
14			9.22	5.26	16.96	28.91	20.32	8.66	2.88
15			5.83	12.31	8.52	0	1.86	0.27	0
16			2.36	7.86	5.53	0.04	1.36	2.57	0.87
17			3	0.41	11.28	0.5	0.31	0.38	4.83
18			0.6	0.03	1.44	0.09	0.72	1.47	3.69
19			0	0	0	0	0	0.97	7.41
20							0.83	6.32	1.12
21							0.52	11.16	11.77
22							0	17.46	16.87
23							2.23	33.36	10.84
24							0	14.86	6.25
25							0	0	0

Tablica A.9. Projektni pljusak povratnog perioda 100 godina (VGP 1%) za trajanja 60 min do 24 h za postaju
Zadar, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	95.47	141.03	172.21	202.87	226.2	250.09	255.25	255.25	255.25
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.48	2.85	1.37	6.69	3.12	4.47	5.83	20.09	14.75
2	5.56	6.44	8.65	47.93	34.35	15.49	8.36	32.26	36.06
3	8.52	22.21	32.02	5.42	21.48	2.52	4.55	15.03	52.87
4	9.57	14.74	4.84	1.14	1.46	9.81	4.01	11.55	21.57
5	19.75	17.28	2.45	2.91	7.09	5.81	24.77	7.21	12.63
6	6.35	11.08	2.1	2.29	3.8	35.36	10.27	5.58	8.91
7	10.77	31.41	19.65	3.75	0.51	29.78	6.91	8.42	2.1
8	7.64	12.36	22.42	10	1.31	7.83	18.2	0	0.17
9	14.32	9.1	11.82	4.53	9.78	18.83	11.77	0.21	0
10	4.54	7.52	14.83	28.2	5.55	1.33	9.33	0	0
11	4.06	4.56	6.78	22.35	4.8	60.06	39.69	0	0.49
12	2.91	1.48	9.65	15.87	14.58	11.64	14.77	0	3.56
13	0	0	5.61	13.34	51.16	0.63	52.43	1.34	0.85
14			13.17	7.81	26.08	45.54	32.01	13.64	4.39
15			8.33	18.3	13.09	0	2.93	0.43	0
16			3.38	11.69	8.49	0.06	2.14	4.05	1.32
17			4.28	0.6	17.34	0.79	0.5	0.6	7.35
18			0.85	0.05	2.21	0.15	1.14	2.32	5.62
19			0	0	0	0	0	1.53	11.28
20							1.3	9.95	1.71
21							0.82	17.58	17.92
22							0	27.5	25.69
23							3.52	52.55	16.5
24							0	23.4	9.52
25							0	0	0

Tablica A.10. Projektni pljusak povratnog perioda 5 godina (VGP 20%) za trajanja 60 min do 24 h za postaju
Split-Marjan, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	36.91	45.23	49.99	54.26	57.22	61.61	65.22	72.64	78.41
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	0.85	1.36	0.39	0.65	1	0.28	1.65	3.22	5.14
2	1.83	7.7	1.43	1.87	2.36	0.64	3.15	12.53	9.82
3	2.71	10.19	0.2	1	1.5	1.44	2.07	6.57	6.79
4	3.18	4.59	0.62	2.83	1.37	2.17	0.69	7.85	3.77
5	4.4	2.97	1.02	2.46	1.99	7.43	1.35	5.5	8.33
6	6.05	1.92	1.73	0.82	6.24	12.03	2.31	2.76	1.12
7	7.34	3.77	2.77	1.51	13.65	2.45	1.84	0.5	0.12
8	3.57	6.03	7.19	0.34	3.17	1.2	0.99	1.97	0
9	2.36	2.27	4.6	0.45	0.61	0.15	4.13	5.1	0
10	2.05	2.75	2.29	1.17	0.39	0.72	6.76	0.8	0
11	1.46	1.14	5.54	1.77	0.84	5.45	10.55	0.02	0.83
12	1.1	0.54	8.86	4.99	2.98	3.21	3.82	1.66	1.97
13	0	0	3.77	3.52	7.46	4.17	4.8	0.1	4.33
14			2.98	8.84	1.74	8.5	5.25	0.04	1.49
15			2.12	5.84	2.69	5.91	6.05	3.61	2.51
16			1.21	13.48	3.65	3.63	3.67	0.25	14.35
17			2.48	1.98	4.42	1.85	0.28	0.56	5.85
18			0.77	0.72	1.15	0.38	0.28	0	0.35
19			0	0	0	0	0.2	2.29	0.2
20							0.33	1.37	3.24
21							2.85	1.18	4.73
22							1.53	4.19	2.95
23							0.48	10.43	0.52
24							0.2	0.14	0
25							0	0	0

Tablica A.11. Projektni pljusak povratnog perioda 25 godina (VGP 4%) za trajanja 60 min do 24 h za postaju
Split-Marjan, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	49.6	70.85	82.03	89.43	96.74	106.46	110.19	110.19	112.87
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.88	2.01	2.19	1.03	0.86	0.49	3.35	2.23	7.82
2	1.5	7.02	1.36	1.21	3.63	1.1	9.84	18.08	17.24
3	4.4	18.33	1.85	1.73	1.49	2.59	3.84	13.06	24.05
4	3.54	12.96	1.06	13.66	0.5	4.22	6.09	15.85	12.01
5	5.22	4.39	4.16	9.4	1.11	9.45	11.62	9.44	9.6
6	6.62	3.59	3.06	2.05	5.21	19.27	5.66	4.02	4.7
7	8.29	3.18	7.44	1.36	11.85	3.71	2.6	8.26	2.02
8	10.22	2.46	11.17	0.47	20.04	3.25	2.26	6	1.52
9	3.05	5.78	4.96	0.61	2.06	0.25	6.82	5.05	0.21
10	2.48	8.84	6.11	2.67	4.54	1.3	15.92	1.09	0
11	1.37	1.48	13.22	3.53	2.46	10.67	12.73	1.53	0
12	1.03	0.82	8.59	21.65	7.68	7.36	8.32	0.97	0.09
13	0	0	3.86	4.49	8.98	5.55	4.61	0.04	4.13
14			4.61	3.67	6.63	15.01	5.07	0	3.16
15			2.61	5.84	10.52	13.25	3.05	3.16	5.74
16			1.61	4.93	5.94	6.23	2.83	0.36	6.61
17			3.72	7.98	3.08	2.1	0.51	0.25	5.25
18			0.45	3.15	0.17	0.65	0.42	0.56	0.48
19			0	0	0	0	0.35	2.62	0.71
20							0.42	3.56	1.15
21							1.67	1.99	2.66
22							0.78	4.55	3.72
23							1.09	7.39	0
24							0.35	0.11	0
25							0	0	0

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	59.01	98.88	120.28	133.51	149.24	168.61	174.31	174.31	174.31
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	2.24	2.8	3.21	1.54	1.32	0.78	5.3	3.52	12.08
2	1.78	9.8	2	1.81	5.6	1.74	15.57	28.61	26.62
3	5.23	25.58	2.71	2.59	2.29	4.1	6.08	20.65	37.14
4	4.21	18.09	1.56	20.4	0.77	6.69	9.63	25.08	18.54
5	6.21	6.13	6.1	14.03	1.72	14.97	18.38	14.93	14.82
6	7.88	5.01	4.49	3.07	8.04	30.52	8.96	6.37	7.26
7	9.87	4.44	10.91	2.03	18.27	5.88	4.11	13.07	3.12
8	12.16	3.43	16.38	0.7	30.91	5.15	3.58	9.49	2.35
9	3.63	8.07	7.28	0.91	3.17	0.4	10.79	8	0.32
10	2.95	12.34	8.96	3.99	7	2.05	25.18	1.73	0
11	1.62	2.07	19.39	5.27	3.79	16.91	20.14	2.42	0
12	1.23	1.14	12.59	32.32	11.85	11.66	13.16	1.54	0.14
13	0	0	5.65	6.7	13.86	8.79	7.29	0.06	6.38
14			6.76	5.48	10.23	23.77	8.02	0	4.88
15			3.83	8.72	16.23	20.98	4.83	5	8.87
16			2.36	7.36	9.17	9.87	4.48	0.57	10.21
17			5.45	11.91	4.75	3.33	0.81	0.4	8.11
18			0.66	4.71	0.26	1.03	0.67	0.88	0.74
19			0	0	0	0	0.55	4.14	1.09
20							0.67	5.63	1.77
21							2.64	3.16	4.11
22							1.23	7.2	5.74
23							1.72	11.69	0
24							0.55	0.17	0
25							0	0	0

Tablica A.12. Projektni pljusak povratnog perioda **100 godina** (VGP 1%) za trajanja 60 min do 24 h za postaju **Split-Marjan**, količina oborine u (mm)

Tablica A.13. Projektni pljusak povratnog perioda 5 godina (VGP 20%) za trajanja 60 min do 24 h za postaju
Ploče, količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	52.49	62.78	68.69	75.94	81.17	88.45	93.26	100.86	109.76
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	0.72	0.5	0.38	0.14	0.29	0.34	1.41	1.47	1.94
2	3.45	8.8	3.27	0.88	0.22	1.8	7.11	6.66	9.8
3	3.89	5.57	2.8	0.55	4.16	3.14	2.87	3.2	0.04
4	3.01	2.67	0.98	0	5.76	0.75	0.41	1.62	2.74
5	8.54	4.12	4.08	2.11	17.4	0.59	0.24	5.96	5.54
6	6.96	12.09	7.85	5.28	13.49	2.73	1.11	0	14.04
7	10.13	14.83	10.4	3.82	6.72	5.13	6.01	0.79	20.7
8	6.35	6.66	6.17	1.42	2.21	21.41	11.69	2.48	4.03
9	1.47	2.01	5.56	6.06	1.15	13.62	3.57	2.93	0.25
10	4.88	3.25	12.83	17	0.89	7.31	1.7	2.24	1.09
11	2.09	1.42	1.23	12.5	1.95	3.89	0.74	1.18	8.44
12	1	0.87	0.75	2.97	0.63	3.54	2.57	3.48	4.9
13	0	0	1.88	2.59	1.46	4.24	9.88	0.38	5.88
14			1.64	7.53	2.53	1.32	5.13	7.89	7.26
15			2.26	8.7	3.43	2.18	8.21	0.19	0.82
16			4.61	3.37	8.43	5.76	18.94	5.35	0.34
17			1.43	0.72	10.01	9.18	0.29	10.4	4.48
18			0.58	0.29	0.44	1.54	0.08	16.09	3.66
19			0	0	0	0	0.02	12.24	6.59
20							2.01	1.85	3.09
21							4.26	4.45	2.13
22							3.07	4.82	1.43
23							1.37	4.21	0.56
24							0.59	0.96	0
25							0	0	0

Tablica A.14. Projektni pljusak povratnog perioda **25 godina** (VGP 4%) za trajanja 60 min do 24 h za postaju **Ploče,** količina oborine u (mm)

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	71.98	87.61	99.27	109.77	112.73	118.72	126.05	137.34	150.38
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.39	1.6	0.54	0.23	3.92	0.45	1.96	1.17	2.66
2	3.57	5.07	2.45	1.97	0.6	2.41	10.7	15.04	5.07
3	7.19	7.17	0.74	1.53	8.93	4.21	2.36	1.79	0.19
4	4.09	2.06	1.11	0.86	21.24	1.01	1.91	2.03	3.54
5	6	3.66	7.64	8.83	29.16	0.79	0.11	2.47	15.06
6	7.96	12.98	14.69	5.38	14.5	3.66	0.95	5.37	6.74
7	4.97	20.71	9.57	12.44	12.1	6.88	15.84	0.13	1.41
8	10.38	17.29	3.87	6.71	0.27	28.74	26.29	2.88	3.15
9	12.31	9.18	3.18	17	0.07	18.28	6.68	0.46	8.46
10	9.16	4.2	4.65	24.05	2.1	9.81	2.66	0	2.18
11	2.91	2.71	2.83	13.98	1.29	5.22	0.47	0.67	13.03
12	2.06	0.98	1.59	3.36	1.78	4.75	1.16	4.9	10.08
13	0	0	6.45	1.21	0.39	5.69	9.21	3.58	5.73
14			1.81	0.57	0.11	1.77	3.96	27.83	32.51
15			5.33	2.51	0.87	2.93	5.64	10.74	0.45
16			19.83	4.16	5.21	7.73	13.09	8.95	0.92
17			12.59	4.85	7.42	12.32	1.6	19.5	0.38
18			0.38	0.09	2.75	2.07	0.7	4.01	0.04
19			0	0	0	0	0.03	1.47	0.64
20							4.21	3.33	3.91
21							7.84	7.9	21.41
22							4.86	6.36	4.42
23							3.45	5.95	7.3
24							0.37	0.82	1.11
25							0	0	0

Trajanje pljuska (min)	60	120	180	270	360	540	720	1080	1440
Količina oborine (mm)	87.21	109.19	128.79	142.87	140.99	143.41	154.01	169.35	185.29
Vremenski korak (min)	5	10	10	15	20	30	30	45	60
0	0	0	0	0	0	0	0	0	0
1	1.68	1.99	0.7	0.3	4.91	0.54	2.39	1.44	3.27
2	4.32	6.32	3.18	2.56	0.75	2.92	13.07	18.55	6.25
3	8.72	8.93	0.97	1.99	11.17	5.09	2.89	2.2	0.24
4	4.96	2.57	1.44	1.12	26.57	1.21	2.33	2.5	4.36
5	7.27	4.56	9.91	11.5	36.47	0.95	0.13	3.05	18.55
6	9.64	16.18	19.06	7.01	18.14	4.43	1.17	6.62	8.31
7	6.02	25.81	12.42	16.2	15.14	8.31	19.35	0.16	1.74
8	12.57	21.55	5.02	8.73	0.34	34.72	32.12	3.55	3.88
9	14.92	11.45	4.12	22.13	0.09	22.09	8.16	0.57	10.42
10	11.09	5.23	6.03	31.3	2.63	11.85	3.26	0	2.69
11	3.52	3.38	3.67	18.2	1.61	6.31	0.58	0.83	16.06
12	2.49	1.22	2.06	4.38	2.22	5.74	1.41	6.04	12.42
13	0	0	8.37	1.58	0.48	6.87	11.25	4.41	7.06
14			2.35	0.74	0.14	2.13	4.84	34.31	40.06
15			6.92	3.27	1.09	3.54	6.9	13.24	0.56
16			25.73	5.42	6.52	9.33	15.99	11.04	1.13
17			16.34	6.32	9.28	14.88	1.95	24.04	0.47
18			0.5	0.12	3.44	2.5	0.86	4.94	0.04
19			0	0	0	0	0.03	1.81	0.79
20							5.14	4.11	4.82
21							9.58	9.74	26.38
22							5.93	7.85	5.44
23							4.22	7.34	8.99
24							0.45	1.01	1.36
25							0	0	0

Tablica A.15. Projektni pljusak povratnog perioda **100 godina** (VGP 1%) za trajanja 60 min do 24 h za postaju **Ploče,** količina oborine u (mm)

Prilog B: Tablice vjerojatnosti pojave maksimalnih količina oborine

mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Poreć.																		
Trajanje	IP95d	2	IP95d	IP95d	5	IP95d	IP95d	10	IP95d	IP95d	25	IP95d	IP95d	50	IP95d	IP95d	100	IP95d
10 min	10.3	12.0	13.7	13.6	16.5	19.4	14.6	20.4	26.2	12.6	26.8	41.1	7.6	32.9	58.2	-1.6	40.3	82.1
20 min	16.9	19.3	21.7	21.9	26.0	30.1	24.4	31.3	38.2	25.1	39.2	53.4	23.2	46.1	69.0	18.8	53.9	89.0
30 min	21.1	23.7	26.3	26.7	31.3	36.0	29.7	37.5	45.2	31.5	46.7	62.0	30.8	54.9	79.1	27.8	64.3	100.9
40 min	23.7	26.3	28.9	29.1	34.5	39.9	31.6	42.0	52.3	31.2	54.7	78.3	26.5	67.4	108.3	15.9	83.5	151.0
50 min	26.4	29.4	32.3	32.8	38.0	43.3	36.2	44.9	53.7	38.1	55.4	72.6	37.2	64 5	91 7	33.7	74.9	116.2
60 min	28.1	31.4	34.8	35.4	41.0	46.6	39.3	48.2	57.1	42.1	58.6	75.1	42.0	67.3	92.6	39.8	76.9	114.0
2 h	33.0	37.3	41.6	42.1	19.5	56.8	46.7	50.1	71.6	18.3	73.6	99.0	15.0	86.3	127.1	38.2	100.6	163.1
<u>4 h</u>	30.2	11.0	19.5	50.5	58.5	66.5	56.6	68.7	80.7	61.0	82.5	104.0	61 /	93.5	125.7	59.1	105.2	151 3
- H	42.7	49.2	= O	50.5	62.2	71 5	50.0	72 7	05.7	66.5	02.5	109.4	67.4	08.2	120.0	65.0	100.2	152.6
12 6	42.7	40.2 F6.2	62.1	54.9	72.0	71.5	70.4	/3./	05.0	75.7	06.4	117.0	77.0	106.7	129.0	76.1	117.2	152.0
12 n	50.3	56.2	62.1	53.4	72.0	80.6	70.4	82.7	95.0	/5./	96.4	117.0	77.0	106.7	136.5	76.1	117.2	158.3
18 n	54.5	61.6	68.7	70.0	79.3	88.5	/8.1	90.3	102.5	84.2	103.5	122.9	85.7	112.8	139.9	85.1	121.6	158.1
24 h	57.5	65.5	73.6	74.5	85.8	97.1	82.8	99.8	116.7	86.6	118.1	149.6	84.3	132.1	180.0	77.7	146.5	215.3
1 d	51.1	57.4	63.6	66.5	76.1	85.7	75.2	89.2	103.2	82.7	106.5	130.4	85.5	120.0	154.6	85.8	134.0	182.2
2 d	69.3	77.2	85.1	88.4	98.1	107.8	98.3	110.4	122.6	106.4	124.5	142.6	109.4	133.9	158.3	110.4	142.4	174.4
3 d	75.6	84.6	93.7	97.3	109.8	122.3	108.9	126.4	143.9	117.6	147.1	176.6	119.9	162.4	204.9	118.8	177.5	236.1
4 d	82.5	91.4	100.4	104.1	116.7	129.3	115.7	133.4	151.2	124.7	154.6	184.5	127.2	170.3	213.4	126.2	185.9	245.5
5 d	89.5	99.4	109.4	113.5	126.0	138.5	126.1	141.9	157.8	136.3	160.4	184.4	140.2	172.9	205.6	141.4	184.5	227.5

Tablica B.1. Procjene maksimalnih količina oborine za različita povratna razdoblja T (R_T - mm) te odgovarajuće donje (IP95d, u mm) i gornje granice (IP95g, u mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Poreč.

			11, 55, 6		raia poc	Laanoot	, pomoo	arazarok		a trajan	ja oa 10																
Trajanje	IP95d	2	IP95d	IP95d	5	IP95d	IP95d	10	IP95d	IP95d	25	IP95d	IP95d	50	IP95d	IP95d	100	IP95d									
10 min	10.3	11.5	12.6	13.7	15.1	16.5	15.5	17.2	18.9	17.0	19.5	21.9	17.7	21.0	24.2	18.2	22.3	26.5									
20 min	15.8	17.5	19.2	20.9	23.2	25.6	23.7	26.9	30.1	26.5	31.4	36.4	27.8	34.7	41.5	28.7	37.9	47.0									
30 min	19.2	21.2	23.3	25.4	28.5	31.6	29.0	33.4	37.9	32.5	39.9	47.3	34.2	44.8	55.4	35.1	49.8	64.5									
40 min	21.8	24.1	26.5	28.9	32.5	36.1	33.0	38.3	43.6	37.2	46.1	55.0	39.3	52.2	65.1	40.6	58.5	76.5									
50 min	23.6	26.1	28.5	31.0	34.9	38.7	35.5	41.1	46.7	39.9	49.5	59.1	42.3	56.1	70.0	43.6	63.1	82.5									
60 min	25.0	27.5	30.0	32.6	36.5	40.4	37.1	42.9	48.6	41.8	51.5	61.1	44.3	58.2	72.1	45.9	65.3	84.7									
2 h	55.2	60.0	64.9	70.0	77.9	85.8	79.0	90.9	102.8	88.4	108.9	129.3	93.6	123.3	153.1	96.9	138.8	180.7									
4 h	62.9	68.7	74.5	80.4	89.6	98.9	90.9	104.7	118.6	101.3	125.4	149.4	106.7	141.9	177.2	109.6	159.4	209.2									
6 h	31.0	33.9	36.7	39.8	44.3	48.8	45.2	51 7	58.2	50.9	61.5	72 1	54.3	69.2	84.2	56.8	77.2	97.7									
12 h	66.6	73.4	80.2	86.8	97.8	108.9	98.7	116.1	133 5	109 5	141.8	174.2	113 7	163.1	212.5	113.9	186.1	258.3									
18 h	38.9	12.4	46.0	19.6	55.4	61.3	56.1	65 1	74.0	62.6	78.6	0/ 5	65.8	89.6	113.5	67.3	101.6	135.9									
24 h	44.2	42.4	F1 0	45.0 EE 6	62.4	60.2	62.6	72.0	9E 1	60.0	01.0	112.0	71.2	105.0	140.7	70.5	101.0	175 5									
24 II 1 d	44.Z	71.0	77.4	93 E	01.5	09.2	02.0	104.6	115 7	102.9	121.1	120.4	107.2	122.2	150.2	100.0	145 5	191.0									
10	00.2	71.0	104.6	03.5	91.5	99.5	95.4	104.0	115.7	102.0	121.1	139.4	107.5	133.5	159.5	109.9	145.5	101.0									
20	87.7	94.7	101.6	109.0	119.5	129.9	121.4	136.8	152.3	132.7	159.9	187.1	137.6	177.9	218.2	139.4	196.5	253.6									
3 d	105.5	113.2	120.9	129.7	141.0	152.3	143.9	159.6	175.4	158.4	183.5	208.6	166.3	201.4	236.4	171.8	219.3	266.8									
4 d	117.8	126.1	134.3	144.1	156.2	168.3	159.6	176.3	193.0	175.7	201.7	227.7	185.0	220.7	256.3	191.9	239.5	287.1									
5 d	130.9	140 7	150 5	161 5	175 2	188 9	179.0	197 4	215.8	196 3	224.8	253.2	205 5	244.6	283.6	211.8	263.8	315.9									

Tablica B.2. Procjene maksimalnih količina oborine za različita povratna razdoblja T (R_T - mm) te odgovarajuće donje (IP95d, u mm) i gornje granice (IP95g, u mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Gospić.

Trajanje	IP95d	2	IP95g	IP95d	5	IP95g	IP95d	10	IP95g	IP95d	25	IP95g	IP95d	50	IP95g	IP95d	100	IP95g
10 min	12.5	14.0	15.4	16.8	19.3	21.8	19.4	23.5	27.7	21.5	29.8	38.0	22.1	35.1	48.1	21.5	41.2	60.8
20 min	20.0	22.3	24.6	26.7	30.2	33.7	30.5	35.8	41.1	33.8	43.5	53.2	35.0	49.6	64.2	35.1	56.0	77.0
30 min	25.2	28.2	31.2	34.0	38.4	42.7	39.0	45.3	51.6	43.5	54.2	65.0	45.5	61.1	76.7	46.3	68.0	89.7
40 min	29.2	32.9	36.7	40.0	45.1	50.2	45.9	53.1	60.2	51.0	63.0	75.1	53.0	70.4	87.7	53.6	77.6	101.6
50 min	32.1	36.5	40.8	44.4	50.2	56.0	51.1	59.1	67.2	56.5	70.2	83.9	58.4	78.2	98.0	58.6	86.1	113.5
60 min	34.3	39.1	43.9	47.9	54.4	60.8	55.4	64.3	73.2	61.6	76.6	91.5	63.9	85.5	107.2	64.4	94.3	124.2
2 h	39.9	45.8	51.7	57.5	67.0	76.5	68.1	82.4	96.8	78 5	103.8	129.1	83.5	121.1	158 7	85.8	139.5	193.2
4 h	46.0	52.7	59.3	66.5	78.9	91.2	79.9	99.9	119.9	94.9	131.7	168.5	103.6	159.6	215.7	109.1	191.7	274.2
6 h	50.6	57.3	64.0	71.6	85.2	98.8	85.8	108.9	132.0	102.4	146.7	191 1	112.2	181.8	251.4	118.4	223.9	329.4
12 h	54.9	62.0	69.1	76.4	91.7	107.1	90.7	110.5	147.7	104.6	166.3	227.9	108 5	213.1	317.6	102.8	272.7	142.7
18 h	59.7	66.5	73.3	80.5	94.9	109.3	94.6	120.4	146.1	109.6	162.9	216.1	116.3	204.0	291.8	116.4	255.4	394.4
24 h	62 1	70.2	73.5	84.9	00.9	114.9	00.5	126.4	152.2	115.0	170.7	226.5	121.9	204.0	205.6	121.6	255.4	412.0
1 d	59.6	67.0	74.5	83.6	98.0	112.0	99.5	120.4	1/8 5	116.9	164.9	212.8	126.2	213.7	278 /	130 /	207.5	362.9
24	72.5	07.0	74.5	08.0	112.6	120.2	115 1	141.0	169.6	122.0	196.7	212.0	142.0	202.5	210.4	149.2	240.0	407.9
2 4	72.5	88.0	00.3	30.0	122.0	129.2	125.2	151.2	177.4	145.9	104.2	239.0	143.8	220.3	208.2	162.7	278.0	407.8
30	79.5	88.0	90.0	115.2	123.0	138.9	125.2	151.3	177.4	145.4	194.3	243.3	150.8	232.5	308.2	103.7	270.5	389.4
40	86.1	95.1	104.1	115.2	131.5	147.8	134.3	174.0	186.4	155.4	203.1	250.7	101.8	240.1	312.4	1/6.1	282.0	388.0

Tablica B.3. Procjene maksimalnih količina oborine za različita povratna razdoblja T (R_T - mm) te odgovarajuće donje (IP95d, u mm) i gornje granice (IP95g, u mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Zadar.

Trajanje	IP95d	2	IP95g	IP95d	5	IP95g	IP95d	10	IP95g	IP95d	25	IP95g	IP95d	50	IP95g	IP95d	100	IP95g
10 min	9.4	10.5	11.6	12.7	14.4	16.1	14.7	17.1	19.5	16.5	20.6	24.8	17.4	23.4	29.3	17.8	26.1	34.5
20 min	15.6	17.2	18.9	20.5	22.7	24.8	23.3	26.0	28.8	26.0	30.0	34.0	27.4	32.7	38.0	28.4	35.2	42.0
30 min	19.7	21.7	23.8	25.8	28.3	30.7	29.0	32.0	35.0	32.1	36.2	40.3	33.8	39.0	44.3	35.0	41.5	48.1
40 min	22.6	25.0	27.3	29.6	32.4	35.2	33.2	36.5	39.9	36.5	41.1	45.7	38.1	44.0	50.0	39.1	46.6	54.1
50 min	24.1	26.8	29.5	31.9	35.2	38.5	36.0	40.1	44.1	39.6	45.6	51.5	41.1	49.2	57.2	42.0	52.5	62.9
60 min	25.2	28.1	31.0	33.7	37.4	41.1	38.2	43.0	47.8	42.1	49.6	57.2	43.8	54.2	64.6	44.6	58.5	72.3
2 h	29.0	32.6	36.1	39.7	45.9	52.0	46.2	56.2	66.1	52.3	71.2	90.0	54.8	83.9	113.0	55.1	98.2	141 3
4 h	34.0	38.0	42.0	46.2	53.9	61.5	54.0	67.0	80.0	61.9	87.4	112.9	65.4	105.9	146.4	65.9	127.7	189 5
6 h	36.7	41.0	15.0	10.2	58.2	66.7	57.9	73.0	88.1	65.2	96.8	128 /	66.8	119.0	171.2	63.6	1/15 0	228.2
12 h	12.1	41.0	52.4	56.7	56.0	75.2	65.0	82.6	100.2	71 1	110.6	150 1	70.0	129.2	206.2	61.2	172.0	220.2
10 h	43.4	47.5	50.2	50.7	72.0	92 O	72.0	02.0	104.1	71.1 01 /	112.0	144.2	94.2	125.0	105 0	01.2	161 2	204.0
24 h	49.0	54.0	59.5	70.1	73.0	07.7	75.0	02.5	104.1	01.4	112.0	144.2	04.5	133.0	105.0	02.0	101.5	239.0
24 n	54.2	59.5	64.7	70.1	78.9	87.7	79.8	93.5	107.2	89.4	114.2	139.0	94.0	131.4	108.8	96.0	142.5	204.4
10	51.7	70.0	01.4	07.3	75.4	83.5	77.0	89.4	101.8	87.4 405 5	109.0	130.0	93.3	125.1	150.9	97.3	142.5	187.0
2 d	65.2	70.9	/6.6	83.2	92.6	102.0	94.2	108.8	123.3	105.5	131.5	157.5	111.3	150.1	189.0	114.4	170.3	226.2
3 d	72.2	77.9	83.7	90.7	100.1	109.5	102.1	116.1	130.1	114.3	138.0	161.6	121.4	155.5	189.6	126.5	174.1	221.7
4 d	78.6	84.4	90.2	97.5	106.8	116.2	109.1	122.8	136.5	121.9	144.3	166.7	129.8	161.4	192.9	136.0	179.2	222.4
5 d	83.2	89.2	95.2	102.8	112.3	121.8	114.8	128.4	142.1	128.2	149.9	171.6	136.7	166.7	196.7	143.7	184.1	224.4

Tablica B.4. Procjene maksimalnih količina oborine za različita povratna razdoblja T (R_T - mm) te odgovarajuće donje (IP95d, u mm) i gornje granice (IP95g, u mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Split-Marjan.

mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Ploče.																		
Trajanje	IP95d	2	IP95d	IP95d	5	IP95d	IP95d	10	IP95d	IP95d	25	IP95d	IP95d	50	IP95d	IP95d	100	IP95d
10 min	13.2	14.5	15.9	17.1	18.9	20.8	19.3	21.7	24.2	21.4	25.2	28.9	22.5	27.6	32.7	23.3	30.0	36.8
20 min	21.2	23.3	25.5	27.3	30.1	32.9	30.7	34.2	37.7	34.0	39.0	43.9	35.8	42.2	48.7	37.0	45.2	53.5
30 min	25.8	28.6	31.5	34.0	37.9	41.8	38.6	43.8	49.0	43.0	51.0	58.9	45.3	56.1	66.9	46.8	61.1	75.3
40 min	29.0	32.5	36.1	39.1	43.9	48.8	44.7	51.2	57.8	50.0	60.2	70.4	52.6	66.7	80.8	54.1	73.0	91.8
50 min	31.5	35.6	39.7	43.1	48.7	54.3	49.5	57.2	64.9	55.2	67.7	80.2	57.7	75.3	93.0	58.8	82.8	106.8
60 min	34.0	38.4	42.8	46.3	52.2	58.2	53.1	61.1	69.0	59.0	71.8	84.6	61.5	79.5	97.5	62.5	86.9	111.3
2 h	41.4	46.5	51.6	55.3	62.5	69.6	62.9	73.3	83.8	68 5	87.4	106.4	69.7	98.2	126.6	68.6	109.0	149 5
4 h	48.8	54.2	59.6	64.3	73.2	82.2	73 5	87.5	101.4	82.1	107.6	133.1	85.7	124.2	162.8	86.3	142.3	198.4
<u>6</u> h	55 5	61.1	66.7	71.9	80.6	80.2	91 5	0/.5	106.9	01.4	112.5	122.6	96.6	124.2	156.0	00.0	1/1 5	192.2
12 h	65.2	71 5	77.0	71.0 02.2	02.6	102.0	02.9	107.0	120.2	104.1	125 7	147.2	100.2	120.7	170.6	112.2	154.2	105.2
10 6	70.6	71.5	94.2	00.0	100.2	110.4	101.2	116.1	120.2	112.0	123.7	161.0	117.0	159.9	190.2	112.2	160.7	220.2
241	70.0	77.4	84.2	90.0	100.2	110.4	101.3	110.1	130.8	112.0	137.0	101.9	117.0	155.1	189.3	119.3	109.7	220.2
24 n	75.1	83.0	90.8	97.4	109.0	120.6	110.1	126.8	143.6	121.6	150.2	1/8.8	126.6	168.1	209.7	128.3	186.4	244.5
1d	/1.0	80.1	89.2	93.7	106.0	118.3	105.9	122.7	139.5	115.6	143.4	1/1.2	118.8	158.4	198.1	118.7	1/3.1	227.5
2 d	93.3	102.2	111.0	116.2	127.8	139.4	128.6	143.3	158.1	140.0	161.6	183.2	145.4	174.1	202.8	148.6	185.8	223.0
3 d	106.4	115.8	125.2	130.9	143.0	155.2	144.2	159.4	174.5	156.9	178.2	199.4	163.5	191.0	218.4	167.9	202.7	237.6
4 d	117.7	127.8	137.8	143.6	156.8	170.1	157.6	174.7	191.7	170.4	195.7	221.1	176.4	210.4	244.4	179.7	224.1	268.4
5 d	125.2	137.4	149.6	155.3	170.3	185.3	170.7	190.1	209.6	181.9	213.1	244.3	185.0	228.9	272.7	184.5	243.4	302.3

Tablica B.5. Procjene maksimalnih količina oborine za različita povratna razdoblja T (RT - mm) te odgovarajuće donje (IP95d, u mm) i gornje granice (IP95g, u mm) 95%-tnih intervala pouzdanosti pomoću razdiobe GEV, za trajanja od 10 minuta do 5 dana na postaji Ploče.

